

Catalouge 2017.01

About this catalogue

In this down-loadable pdf document we have collected the data sheets for most of our standard transformers for pro audio and audiophile applications. It also includes some of our technical papers of more general interest.

In the "Quick selection guide" we have grouped the transformers based on their most common application. If you prefer to search the catalogue in strict type number order, please use the bookmarks icon in the menue to the left.

For additional information about Lundahl Transformers please visit our website, www.lundahl.se and our facebookpage, www.facebook.com/lundahltransformers

Over the past several years we have had the pleasure of meeting many of you at our booth at the ProSound & Light exhibitions in Europe and at the AES exhibition in the United States.

Thank you very much for the visits and for all the nice comments about our products. We welcome your appreciation with great pride, but also feel a big responsibility to justify your confidence by continuing to deliver excellent products in the coming years.

Per Lundahl Managing Director

TRANSFORMERS MOSTLY USED IN PRO AUDIO APPLICATIONS

Line input transformers

Туре	Turns ratio	Level (@50 Hz)	Usage / Comment
LL1531	1+1 : 1+1	+20 dBU	Line input. Small size
LL1540	1+1 : 1+1	+30 dBU	High level line input
LL1544A	1+1+1+1 : 2+2	+20 dBU	Line input. Amorphous core
LL1545A	1+1+1+1 : 2+2	+24 dBU	Line input
LL1592	1+1 : 1+1	+30 dBU	High quality line input.
LL1922	1+1 : 4+4	+26 dBU	Line step-up input. Similar to UTC LS-10
LL6404	1:1	N/A (High!)	Zero Field line input
LL7101	1+1 : 1.37	N/A (High!)	Zero Field line input
LL7901	1+1+1+1 : 1+1+1+1	+34 dBU	Very high level line input

Line output transformers

Туре	Turns ratio	Level (@50 Hz)	Usage / Comment
LL1517	1+1,ct : 1+1	+28 dBU	With Faraday shields. General purpose.
LL1524	1+1 : 1+1	+28 dBU	Balanced drive. Very low leakage inductance.
LL1539	2:1+1	+31 dBU	Balanced drive
LL1555	1+1+1+1 : 2+2	+27 dBU	Balanced drive
LL1560	2+2 : 1+1+1+1	+26 dBU each secondary	Balanced drive. 4 output active split.
LL1582	1+1 : 1+1	+30 dBU	With Faraday shields. General purpose. Size optimized for Euroboard
LL1585	1+1 : 1+1	+31 dBU With Faraday shields. General purpose.	
LL2734	1+1 : 1.4 + 1.4	+30 dBU	Solid State Single End
LL2811	1+1 : 1+1	+30 dBU	Balanced drive. Low leakage inductance. Size optimized for Euroboard
LL5402	2:1+1	+22 dBU	Unbalanced drive
LL7401	1+1 : 1+1	+24 dBU	Balanced drive. Low profile. Very low leakage inductance.

General purpose transformers

Туре	Turns ratio	Level (@50 Hz)	Usage
LL1527	1+1 : 1+1	+16 dBU	Split 1 : 1 direct + 1 isolated. Ground isolation
LL1527xl	1+1 : 1+1	+19 dBU	Split 1 : 1 direct + 1 isolated. Ground isolation
LL1532	1+1 : 2	+10 dBU	Mic input. Ground isolation
LL1570	1+1 : 1+1	+16 dBU	Split 1 : 1direct + 1 isolated. Ground isolation
LL1570xl	1+1 : 1+1	+19 dBU	Split 1 : 1direct + 1 isolated. Ground isolation
LL1581xl	1 : 1+1	+13 dBU	Splitting 1 : 1 direct + 2 isolated
LL1583	1 : 1+1	+8 dBU	Splitting 1 : 1 direct + 2 isolated. Small size
LL1588	1+1 : 1+1	+22 dBU	High level line isolation transformer
LL1590	1 : 1+1+1	+15 dBU	Splitting 1 : 1 direct + 3 isolated
LL1591	1+1 : 1+1	+16 dBU	Low price ground isolation transformer
LL1593	1+1 : 2	+12 dBU	Small, low price ground isolation transformer
LL1944	1+1 : 1+1+1+1	+28 dBU	Mic split for speaker box etc.
LL7902	1+1+1+1 : 1+1+1+1	+28 dBU	For high level applications, input and output.
LL7904	1:1+1	+23 dBU	High level splitting 1 : 1 direct + 2 isolated

DIN units. Transformer units with screw connectors for audio installations

Туре	Max level (@50 Hz)	Usage / Comment
DIN1527	+16 dBU	Galvanic isolation and balanced-unbalanced conversion
DIN1588	+22 dBU	High signal level galanic isolation etc.
DIN1581XL	+13 dBU	Splitting 1 direct + 2 isolated

Microphone transformers

Туре	Turns ratio	Level (@50 Hz)	Usage / Comment
LL1528	1+1 : 2.5+2.5	+10 dBU	200Ω : 5k microphone input
LL1530	1+1 : 3.5+3.5	+10 dBU	DI (Direct Input) 10k : 200Ω
LL1538*	1+1 : 5	+10 dBU	200 Ω : 5k microphone input
LL1538xl*	1+1 : 5	+13 dBU	High level 200 Ω : 5k microphone input.
LL1550	1+1+1+1 : 4+4	+6 dBU	Special application input. Amorphous core
LL1571	1+1 : 1.75+1.75	+10 dBU	200Ω : 2k5 microphone input
LL1576*	1+1 : 7	+10 dBU	200 Ω : 10k microphone input
LL1577*	1+1 : 14	+4 dBU	50Ω : 10k microphone input
LL1578*	1+1 : 10	+4 dBU	50 Ω : 5k microphone input
LL1578xl*	1+1 : 10	+7 dBU	High level 50 Ω : 5k microphone input.
LL1587	1+1 : 4	+0 dBU	Small size 200 Ω : 3k2 microphone input
LL1636	1+1+1+1 : 10+10	-2 dBU	Special application input. Amorphous core
LL1927A	1+1 : 55 + 55		Very high turns ratio. For ribbon mics.
LL1935	1+1 : 5 + 5	+7 dBU	DI (Direct Input) 20k : 200Ω
LL1936	(2+1) + (2+1) : 4+4	+14 dBU	75Ω , 150Ω , 300Ω and 600Ω : 1200Ω
LL1940	9:1+1	45V RMS	Tube mic output with "character"
LL1951*	1+1 : 14	+4 dBU	Improved LL1577
LL2912	1:37	-30 dBU (1:37)	For ribbon microphones. Amorphous core.
LL2913	1+1+1+1 : 37	-30 dBU (1:37)	For ribbon microphones. Amorphous core.
LL2914	1+1+1+1 : 37	-30 dBU (1:37)	For ribbon microphones. Mu metal core.
LL2915	1:37	-30 dBU (1:37)	For ribbon microphones. Mu metal core.
LL2916	1+1 : 55 + 55		Mu metal core version of LL1927A
LL7903	1+1+1+1 : 2+2+2+2	+28 dBU	Very high level mic/line input.
LL7906	1+1+1+1 : 5.6 + 5.6	+16 dBU	High level mic/line input.

Transformers marked with * have compatible pinout.

Туре	Mex level @ 50 Hz	Usage / Comment	
LL6810-phmphm	+15 dBU	Isolation transformer unit Phono - Phono w. 6 ft cable	
LL156X-3FX3MX	+24 dBU	XLR female to XLR male	line input
LL156X-3FXPHM	+24 dBU	XLR female to Phono male	line input
LL156X-3FXNP2C	+24 dBU	XLR female to 2 pole 1/4" plug	line input
LL156X-PHF3MX	+24 dBU	Phono female to XLR male	line input
LL1584-3FX3MX	+16 dBU	XLR female to XLR male	general purpose
LL1584-3FXPHM	+16 dBU	XLR female to Phono male	general purpose
LL1584-3FXNP2C	+16 dBU	XLR female to 2 pole 1/4" plug	general purpose
LL1584-PHF3MX	+16 dBU	Phono female to XLR male	general purpose
SIB15	+12 dBU	Stereo Isolation and Balancing unit	(PC to Pro)

XLR-XLR problem solvers units (All with turns ratio 1 : 1)

Miscellaneous transformers

Туре	Turns ratio	Usage / Comment
LL1572	110 : 110 ohms	Digital audio isolation. Replaces LL1566
LL1573	110 : 110 + 110 ohms	Digital audio split, 2 isolated out.
LL1574	110 : 75 ohms	Digital Audio AES/EBU : SPDIF interface
LL1575	1:1	Composite video isolation
LL1589	110 : 110 + 110 + 110 ohms	Digital audio split, 3 isolated out.
LL2410	2+2+2+2 : 1+1+1+1+1+1+1+1	General purpose 100V loudspeaker transformer
LL6702	N/A	Telephone hybrid transformer

TRANSFORMERS FOR TUBE AMPLIFIERS AND OTHER AUDIOPHILE APPLICATIONS

Primary Secondary Type Comments 3.3k. 6.0k or 11.5k LL1620 4, 8, 16 ohms LL1620CFB 3.3k, 6.0k or 11.5k 4, 8, 16 ohms For cathode feedback LL1623 1.6k, 3.0k or 5.6k 4, 8, 16 ohms 650 ohms, 1.2k or 2.3k 4, 8, 16 ohms LL1627 Small size LL1663 5k 8 ohms LL1664 3k 8 ohms Small size LL1679 2.6k, 4.5k, 9.7k 4, 8, 16 ohms UL taps LL1682 5.5k 5 ohms Small size LL1688 5.5k, 9.2k, 20.5k 4, 8, 16 ohms Big size LL1691 9k 8 ohms Big size 600 ohms, 1k or 2.3k LL1693 4, 8, 16 ohms High power LL2735B 16k 8 ohms For SE LL2750 5.5k 5 ohms Small size LL1682 4, 8, 16 ohms LL2752 1.2k, 2.0k, 4.6k Silver version available LL2755 11k 8 ohms Big size. For 813 etc.

Tube amplifier output transformers

LL1620, LL1623, LL1627, LL1663, LL1664, LL1679, LL1682, LL2735B, LL2752 are also available with amorphous C-core.

Interstage transformers, anode chokes, grid chokes and tube line output transformers

Туре	Usage	Usage / Comment	
LL1621	Non-inverting interstage transformer		
LL1630	Line output	7.2 : 1 line output	
LL1635	Interstage transformer	1+1 : 1+1	
LL1660	Interstage / line output transformer	2.25 + 2.25 : 1+1+1+1	
LL1660Ag	Interstage / line output transformer	2.25 + 2.25 : 1+1+1+1. Silver	
LL1660S	Interstage with phase splitting	2.25 + 2.25 : 1+1+1+1	
LL1667	Tube anode choke	DC current 15 – 40 mA	
LL1668	Tube anode choke	DC current 25 – 80 mA	
LL1670	Grid choke	0.8mA	
LL1671	Interstage / line output transformer	2+2 : 1+1+1+1	
LL1677	High current interstage transformer	For 300B <u>driver</u> tube.	
LL1680	Line output transformer	Replacement for UTC LS-27 transformer	
LL1689	Line Output Transformer	9+9 : 1+1+1+1 Line output version of LL1660	
LL1689Ag	Line Output Transformer. Silver	9+9 : 1+1+1+1 Line output version of LL1660	
LL1692A	Interstage / Line output transformer	1.75+1.75 : 1+1+1+1	
LL2743	Tube anode choke	DC current 40 – 110mA	
LL2745	Line output	2.8+2.8 : 1+1+1+1	
LL2746	Interstage stepup	1 : 2 for two stage tube amp.	
LL2747	Line output 1+1+1+1 : 2 for low impedance tubes		
LL2753	Interstage SE –SE 1:1	20 – 60mA. Improved bandwidth	
LL2754	Solid state headphone out. 1+1:1.1	For 32/50 and for 600 ohm headphones	
LL2756	Interstage SE –SE 1:1	10 -40mA . Improved bandwidth	

LL1660, LL1660S, LL1667, LL1668, LL1671, LL1677, LL1689, LL1692A, LL2743 also available with amorphous C-core.

Other audiophile type transformers

Туре	Usage	Usage / Comment	
LL1674	Mic/line input transformer	1+1:4+4 Amorphous core	
LL1676	Mic/line input transformer	1+1:2+2 Amorphous core	
LL1678	MC input. Amorphous core	1+1+1+1 : 16 + 16	
LL1681	MC input. Mu-metal core	1+1 : 13 + 13	
LL1684	Audio isolation transformer.	General purpose. With amorphous core	
LL1690	Line input . Amorphous core	1+1:1+1. Excellent for phase splitting.	
LL1930	Tube preamp line output	Mu metal core. For DC decoupled output	
LL1931	MC input. Amorphous core	1:8, 1:16. Medium impedance cartridge	
LL1931Ag	MC input. Amorphous core. Silver	1:8, 1:16. Medium impedance cartridge	
LL1933	MC input. Mu metal core	1:8, 1:16 Medium impedance cartridge	
LL1933Ag	MC input. Mu metal core. Silver	1:8, 1:16 Medium impedance cartridge	
LL1941	MC input.Amorphous core	1:16, 1:32 Low impedance cartridge	
LL1941Ag	MC input.Amorphous core. Silver	1:16, 1:32. Low impedance cartridge	
LL1943	MC input.Mu metal core	1:16, 1:32. Low impedance cartridge	
LL1943Ag	MC input.Mu metal core. Silver	1:16, 1:32. Low impedance cartridge	
LL1948	Line input, Amorphous core	1+1 : 1+1 Amorphous core	
LL1948Ag	Line input, Amorphous core. Silver	1+1 : 1+1 Amorphous core	
LL1949	Stepdown line input	2+2 : 1+1 Cardas copper wire.	
LL7903Ag	Line input or output. Silver	1+1+1+1 : 2+2+2+2	
LL7905	Amplifier input transformer	High level input, 1+1+1+1 : 5.6 + 5.6	
LL7906	Amplifier input transformer Improved LL7905		
LL9206	MC input. Amorphous core	1+1+1+1 : 10 + 10	
LL9226	MC input. Amorphous core	1+1+1+1:10+10 (Improved LL9226)	

Mains transformers, mains isolation transformers and power supply chokes

Туре	Usage	Usage / Comment	
LL1638	Mains choke	1 – 8 Hy, 800 – 200 mA	
LL1648	Mains transformer	350V, 2 x 5.9V + 2 x 6.6V	
LL1649	Mains transformer	230V, 4 x 6.6V	
LL1650	Mains transformer	350V, 4 x 6.6V	
LL1651	Mains transformer	500V, 4 x 6.6V	
LL1655	Mains isolation transformer	2 x 115V, 300VA total	
LL1658	Mains isolation transformer	2 x 115V, 100VA total	
LL1662	Mains isolation transformer with	2 x 115V +2 x 10V , 300VA total	
	stepup/stepdown	,	
LL1669A	Mains transformer	340V, 110V and 4 x 6.3V	
LL1673	Mains choke	8 – 20 Hy, 100 – 250mA	
LL1683	Preamp mains transformers	250V, 48V , 2 x 6.6V and 2 x 5.2V	
LL1685	Preamp mains choke	10H – 17H, 160mA – 100mA	
LL1694	Filament current choke	3A, 40mH for filament current filtering	
LL2733	Filament current choke	3.4A, 100mH for filament current filtering	
LL2738	Filament current mains transformer	8 x 6.6V (3A) and 1 x 110V (0.1A)	
LL2751	Small size filament current choke	0.6A, 180mH or 1.2A, 45mA	

Datasheets

"100V Line" Loudspeaker transformers

140V systems

Auto transformer LL2415, LF: 50 Hz/140 V

Taps Voltage (V) (at 140V primary voltage)	Power @ 8 ohms (W)	Power @ 16 ohms (W)
16	32	16
24	72	36
32	128	64
35	153	76

Auto transformer LL2416, LF: 50 Hz/140 V

Taps Voltage (V) (at 140V primary voltage)	Power @ 8 ohms (W)	Power @ 16 ohms (W)
8	8	4
16	32	16
24	72	36
32	128	64
48	288	144

LL2415 and LL2416 can also be used in 100V systems. LF : 36Hz@100V Each tap voltage is reduced with approx. 29% Each tap power level is reduced with 50%

70V systems

Auto tropoformor	110447	\sim
Auto transformer	LLZ417,	Uν

Taps Voltage (V) (at 65V primary voltage)	Power @ 8 ohms (W)	Power @ 16 ohms (W)
21	50	25

100V systems

Full transformer LL3610, LF: 100Hz@100V

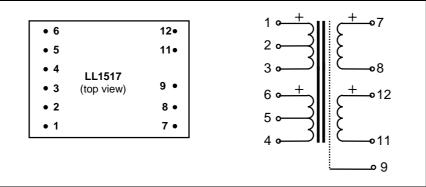
Taps Voltage (V) (at 100V primary voltage)	Power @ 8 ohms (W)	Power @ 16 ohms (W)
2.8V	1	0.5

(Each LL3610 is designed to feed up to 20 x 80hms loudspeaker elements connected in parallel)

General Purpose High Power Transformer LL2410

Our transformer LL2410 and its' descendants are general purpose high power loudspeaker transformers. The transformer is extremely flexible and well suited for applications with power levels from 250W and up, line voltage from 70V to 140V. The transformer can be configured as auto transformer or full transformer.

This transformer is e.g. used in the loudspeaker systems of Nya Ullevi in Gothenburg and Råsunda Stadium in Stockholm.


Audio Output Transformer LL1517

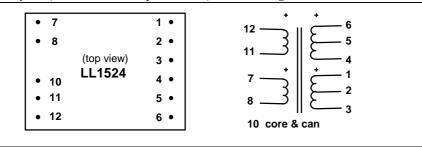
LL1517 is an audio output transformer for balanced or unbalanced drive. The transformer is built from two threesection coils, with primaries and secondaries separated by electrostatic shields, and a audio C-core of our own production. The transformer is housed in a mu-metal housing.

The LL1517 has sufficient low copper resistance to meet broadcast specifications in a conventional drive configuration, but is (as all output transformers) ideally used with mixed feedback drive circuits. (See separate paper for mixed feedback design principles).

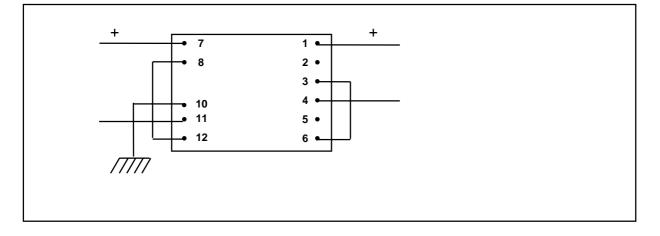
Turns ratio:

Dims (Length x Width x Height above PCB (mm)): Pin layout (viewed from <u>component</u> side) and winding schematics: 1 + 1 : 1 + 1 47 x 34 x 18

Spacing between pins:	5.08 mm (0.2")
Spacing between rows of pins:	35.56 mm (1.4")
Weight:	105 g
Core:	Audio C-core
Housing:	Mu-metal
Rec. PCB hole diameter:	1.5 mm
Static resistance of each primary:	9.2 Ω
Static resistance of each secondary:	9.5 Ω
Leakage inductance of secondaries (sec. in series):	0.3 mH
No-load impedance:	>1kΩ @ 50 Hz, +20 dBU
Optimum source impedance:	Minus 18 Ω (See above)
Balance of output (according to IRT, source $< 10 \Omega$, Load 600 Ω):	> 60 dB
Maximum output level before saturation (sec. in series, load 600 Ω)	+ 24 dBU @ 30 Hz
Distortion (achieved with mixed feedback drive circuit, load 600 Ω)	< 0.03 % @ 20 dBU, 30Hz
Frequency response (source 10Ω , load 600Ω):	10 Hz 80 kHz +/- 0.3 dB
Loss across transformer (at midband with 600 Ω load):	0.3 dB
Isolation between primary and secondary windings / between	
windings and core:	4 kV / 2 kV


Audio Output Transformer LL1524

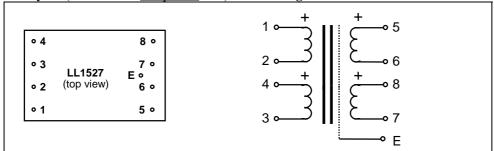
LL1524 is an audio output transformer for balanced drive. The LL1524 is a 5-section output transformer. This results in a very low leakage inductance and thus excellent HF characteristics.


The LL1524 is (like all C-core audio output transformers) ideally used with negative source impedance achieved using mixed feedback drive circuits. See separate paper for mixed feedback design principles.

1 + 1 : 1 + 1 48 x 34 x 22

Dims (Length x Width x Height above PCB (mm)): Pin layout (viewed from <u>component</u> side) and winding schematics:

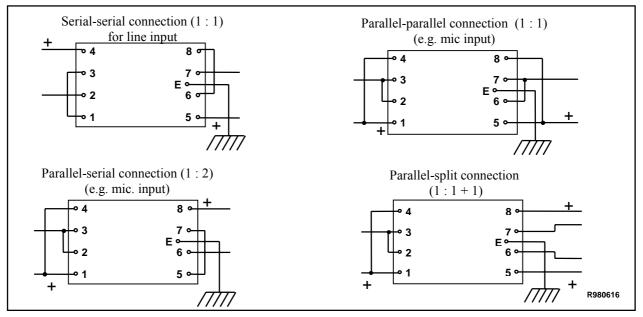
Spacing between pins:	5.08 mm (0.2")
Spacing between rows of pins:	35.56 mm (1.4")
Weight:	125 g
Core:	Audio C-core
Housing:	Mu-metal
Rec. PCB hole diameter:	1.5 mm
Static resistance of each primary:	7.3 Ω
Static resistance of each secondary:	7.5 Ω
Leakage inductance of secondaries (sec. in series):	0.1 mH
No-load impedance:	>1kΩ @ 50 Hz, +20 dBU
Optimum source impedance:	Minus 14 Ω (mixed feedback)
Balance of output (according to IRT, source $< 10 \Omega$, Load 600 Ω):	> 45 dB
Maximum output level before saturation (sec. in series, load 600 Ω)	+ 24 dBU @ 30 Hz
Distortion (achieved with mixed feedback drive circuit, load 600 Ω)	< 0.04 % @ 20 dBU, 30Hz
Frequency response (source 0Ω , load 600Ω):	5 Hz 100 kHz +/- 0.5 dB
Loss across transformer (at midband with 600 Ω load):	0.5 dB
Isolation between primary and secondary windings / between	4 kV / 2 kV
windings and core:	



Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN

General Purpose Transformers LL1527 and LL1527XL

LL1527 is a truly general purpose transformer for microphone or line input, for output and for galvanic isolation of units. LL1527 has been generally accepted by the audio industry as <u>the general purpose audio transformer</u>. The LL1527 is built-up from two coils, each with one primary and one secondary winding separated by an electrostatic shield. The core is a high permeability mu metal core. The transformer is housed in a mu-metal can. In the LL1527XL, the core is about 45% larger than in the LL1527, resulting in a larger level capability. 1 + 1 : 1 + 1

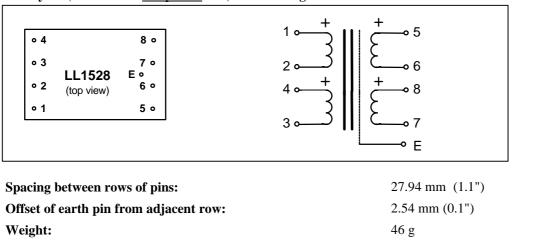

Pin layout (viewed from <u>component</u> side) and winding schematics:

Spacing between pins 5.08 mm (0.2") Spacing between rows of pins 27.94 mm (1.1")

Offset of earth pin from adjacent row: 2.54 mm (0.1")

	LL1527	LL1527XL
Dimensions (L x W x H above PCB, in mm)	38 x 24 x 17	38 x 24 x 20.5
Weight:	48 g	65 g
Rec. PCB hole diameter:	1.5 mm	1.5 mm
Static resistance of each primary:	43Ω	54Ω
Static resistance of each secondary:	56Ω	67Ω
Distortion (primaries connected in series, source impedance 800Ω):	+ 6 dBU 0.1% @ 50 Hz	+ 9 dBU 0.1% @ 50 Hz
	+16 dBU < 1 % @ 50 Hz	+19 dBU < 1 % @ 50 Hz
Self resonance point :	> 200 kHz	> 200 kHz
Optimum load for best square-wave response (sec. in series):	3 - 4 kΩ	3 - 4 kΩ
Frequency response (source 800Ω , load 4 k Ω serial connection):	10 Hz 150 kHz +/- 0.2 dB	10 Hz 150 kHz +/- 0.2 dB
Loss across transformer (at midband, with above termination):	0.4 dB	0.5 dB
Isolation between windings/ between windings and shield:	4 kV / 2 kV	4 kV / 2 kV

Connection alternatives and suggested applications:


Microphone Input Transformer LL1528

LL1528 is a microphone input transformers built up from two coils, each with one primary and one secondary section separated by a electrostatic shield. The core is a high permeability mu-metal core, and the transformer is housed in a mu-metal can.

1 + 1 : 2.5 + 2.5

Dimensions (Length x Width x Height above PCB (mm)): 38 x 24 x 17 **Pin layout (viewed from component side) and winding schematics:**

Rec. PCB hole diameter:

Static resistance of each primary:

Static resistance of each secondary:

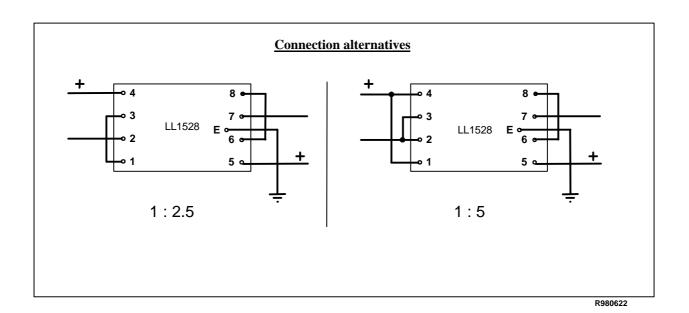
Distortion (primaries connected in parallel, source impedance 200Ω):

Self resonance point :

Optimum termination for best square-wave response (Connection 1:5, source imp. 200Ω): Frequency response (source and load as above):

Isolation between windings/ between windings and shield:

450 Ω + 0 dBU primary level, 50 Hz: 0.2 %

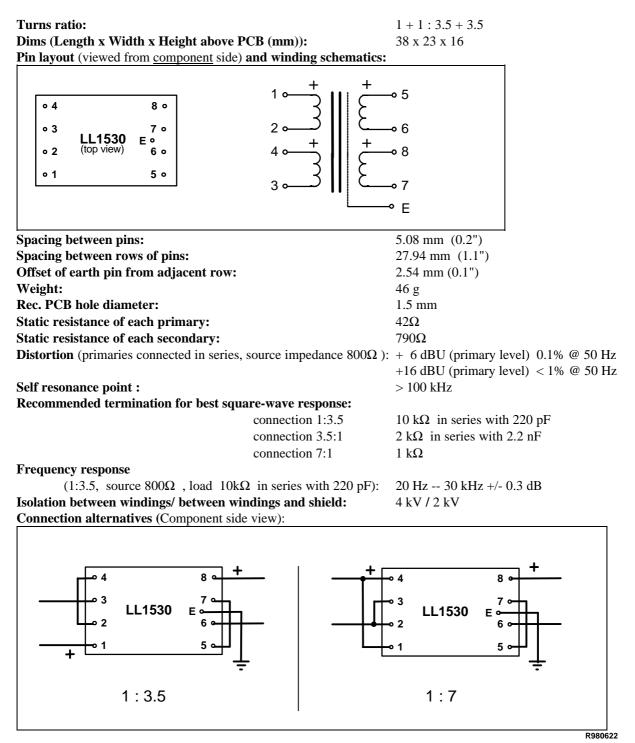

+ 10 dBU primary level, 50 Hz: 1 %

> 80 kHz

1.5 mm 42 Ω

9 k Ω in series with 3 nF

10 Hz - 40 kHz +/- 0.3 dB 4 kV / 2 kV

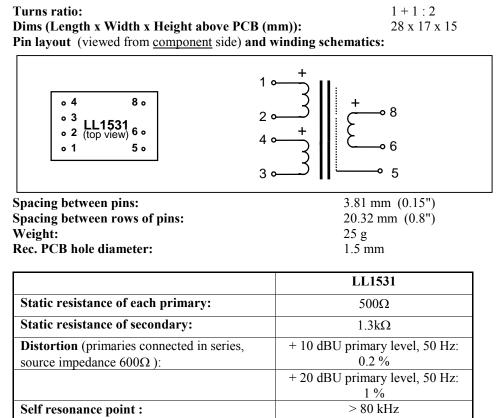


Microphone Transformer / D-I Box Transformer LL1530

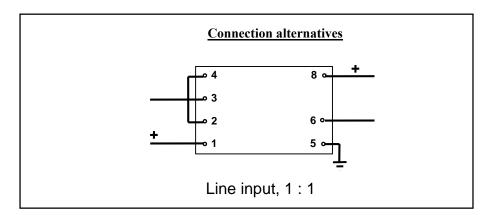
LL1530 is a microphone input transformer used for matching a 200 or 800 Ω microphone to 10 k Ω or for matching a high impedance source to a microphone input.

The transformer consists of two coils, each with one primary and one secondary winding separated by an electrostatic shield, and a high permeability mu-metal core. The transformer is encapsulated in a mu-metal case for magnetic shielding.

For best performance, the high impedance side of the transformer (3.5 + 3.5) should be connected in series.



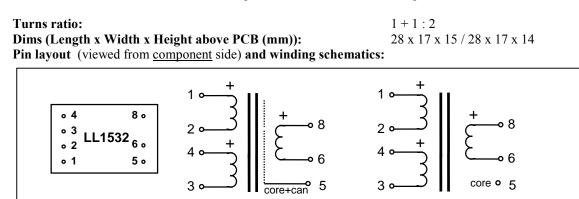
High Impedance Line Input Transformer LL1531


LL1531 is a small size, high impedance line input transformer for bridging input applications The transformer consists of two coils, each with one primary and one secondary winding separated by an electrostatic shield. The two secondary windings are internally connected in series. The core is a high permeability mu-metal lamination core. The transformer is magnetically shielded by a mu-metal housing.

Being a high impedance transformer, the LL1531 should normally be used with primaries connected in series.

Optimum termination for best square-wave
response (source imp. 600Ω):8 kΩ in series with 1.2 nFFrequency response
(source and load as above)10 Hz - 25 kHz +/- 0.3 dB

Isolation between windings/ between windings and shield: 3 kV / 1.5 kV


General Purpose Audio Transformers LL1532 and LL1593

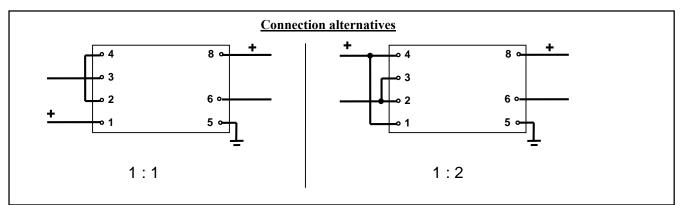
LL1532 and LL1593 are small size medium impedance transformers suitable for splitting and other general purpose applications.

LL1532 consists of two coils each with one primary and one secondary winding separated by an electrostatic (Faraday) shield. The two secondary windings are internally connected in series. The core is a high permeability mu-metal core. The LL1532 is magnetically shielded by a mu-metal housing.

LL1593 is a **low-cost version** of the LL1532, with the same winding structure but without Faraday shields and mu-metal housing.

The LL1532 and LL1592 can be used with primaries in series for 1:1 or in parallel for 1:2 turns ratio.

LL1532


Spacing between pins: Spacing between rows of pins: Weight: Rec. PCB hole diameter:

3.81 mm (0.15") 20.32 mm (0.8") 25 g / 19 g 1.5 mm

LL1593

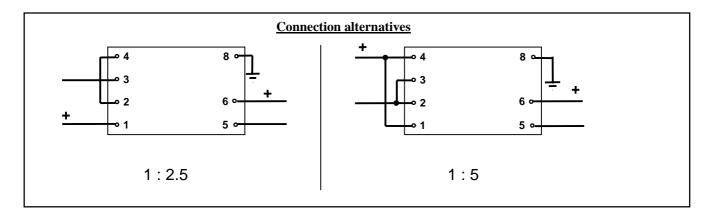
	LL1532	LL1593
Static resistance of each primary:	70Ω	70Ω
Static resistance of secondary:	180Ω	175Ω
Distortion (primaries connected in series, source impedance 600Ω):	+ 6 dBU primary level, 50 Hz: 0.2 %	+ 6 dBU primary level, 50 Hz: 0.2 %
	+ 12 dBU primary level, 50 Hz: 1 %	+ 12 dBU primary level, 50 Hz: 1 %
Self resonance point :	$\sim 200 \text{ kHz}$	~ 200 kHz
Frequency response (source 600Ω , load $10k\Omega$)	10 Hz - 60 kHz +/- 0.3 dB	10 Hz - 60 kHz +/- 0.3 dB
Optimum termination for best square-wave response (source imp. 600Ω):	$2 \text{ k}\Omega$ in series with 1.6 nF	$2 \text{ k}\Omega$ in series with 1.6 nF

Isolation between windings/ between windings and shield: 3 kV / 1.5 kV

1 + 1 : 5

Microphone Input Transformers LL1538 and LL1538XL

The LL1538 and the LL1538XL are high performance microphone input transformers, each with a high permeability mu-metal core and two three-section coils.


In the LL1538XL the core is about 45% larger than in the LL1538, resulting in a larger level capability. In both types, primary and secondary windings are separated by electrostatic shields. The three-section winding structure of the transformers results in a very low leakage inductance and thus an excellent frequency response. The transformers are encapsulated in mu-metal cases for magnetic shielding.

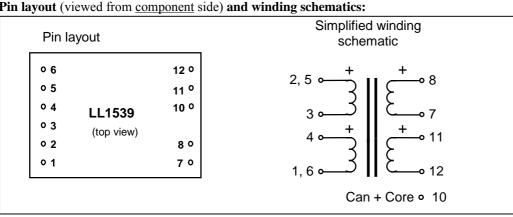
Turns ratio:

Pin layout (viewed from <u>component</u> side) and winding schematics:

• 4		8 °	
• 3	L 1538		2 ~ 6
• 2 (to	p view)	6 °	4 ⊶ + Π ξ , , , , , , , , , , , , , , , , , ,
• 1		5 °	,

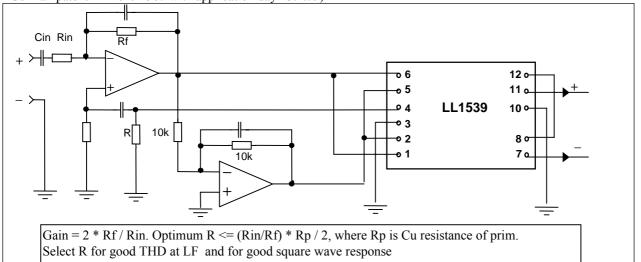
	LL1538	LL1538XL
Dimensions (Max. Length x Width x Height above PCB (mm))	38 x 24 x 17	38 x 24 x 20.5
Spacing between pins	5.08 mm (0.2")	5.08 mm (0.2")
Spacing between rows of pins	27.94 mm (1.1")	27.94 mm (1.1")
Weight	46 g	65 g
Rec. PCB hole diameter	1.5 mm	1.5 mm
Static resistance of each primary	44Ω	61Ω
Static resistance of each secondary	880 Ω	975 Ω
Distortion (primaries connected in parallel, source impedance 200Ω)	0.2 % @ 0 dBU (0.775V rms) primary level, 50 Hz	0.2 % @ + 3 dBU (1.1V rms) primary level, 50 Hz
	1 % @ + 10 dBU (2.5 V rms) primary level, 50 Hz	1 % @ + 13 dBU (3.5V rms) primary level, 50 Hz
Self resonance point	> 120 kHz	> 120 kHz
Optimum termination for best square-wave response (Connection 1:5, source imp. 200Ω)	No termination necessary	No termination necessary
Frequency response (source 200 Ω , no termination)	10 Hz - 100 kHz +/- 0.3 dB	10 Hz - 80 kHz +/- 0.3 dB
Isolation between windings/ between windings and shield	4 kV / 2 kV	4 kV / 2 kV

Audio Output Transformer LL1539


LL1539 is an audio output transformer for balanced drive.

In LL1539, the winding arrangement is such that (properly connected) the secondary windings are surrounded by cold (neutral) parts of the primary windings. This reduces the effect of the capacitance between the primary and the secondary windings. Thus, primaries should always be connected as in the application example below, with or without current feedback drive (negative source impedance).

Turns ratio:


2 : 1 + 1 47 x 34 x 21

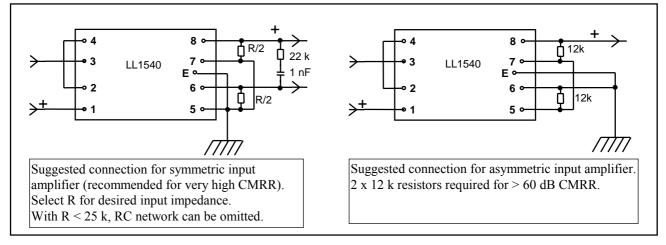
Dims (Length x Width x Height above PCB (mm)):	
Pin layout (viewed from component side) and winding sche	m

Spacing between pins:	5.08 mm (0.2")
Spacing between rows of pins:	35.56 mm (1.4")
Weight:	130 g
Rec. PCB hole diameter: 1.5 mm	1
Static resistance of each primary half (4 1&6 or 3 2&5 respectively):	20 Ω
Static resistance of each secondary:	20 Ω
Secondary leakage inductance (secondaries in series):	0.6 mH
No-load impedance:	$>2 k\Omega @ 50 Hz, +20 dBU$
Optimum source impedance:	Minus 40 Ω
Balance of output (according to IRT, source $< 10 \Omega$, load 600 Ω):	> 65 dB
Maximum output level before saturation (load 600 Ω):	+ 24 dBU @20Hz
Frequency response (@ 10 dBU, source $< 10 \Omega$, load 600 Ω):	20 Hz 60 kHz +/- 0.3 dB
Voltage loss across transformer (at midband with 600 Ω load):	1 dB
Isolation between primary and secondary windings / between	
windings and core:	4 kV / 2 kV

Application example: This schema shows the principles of mixed feedback circuitry for eliminating transformerinduced distortion and for reducing output impedance. (**NOTE**! This application was covered by a now outdated German patent DE 29 01 567 with application day 13.1.79)

Line Input Transformer LL1540

LL1540 is a high impedance, high level line input transformer.

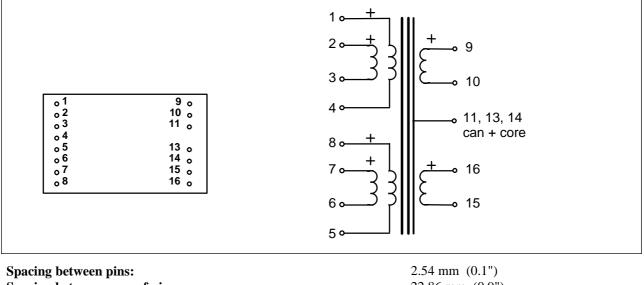

The transformer consists of two coils, each with one primary and one secondary part separated by a electrostatic shield. The core is a high permeability mu-metal core, and the transformer is housed in a mu-metal can. Being a high impedance transformer, the LL1540 should normally be used in a series-series connection.

	urns ratio: $1 + 1 : 1 + 1$ ims (Length x Width x Height above PCB (mm)): $38 \times 24 \times 17$ n layout (viewed from component side) and winding schematics:					
 ○ 4 ○ 3 LL1540 ○ 2 (top view) ○ 1 	8 ° 1 ° 7 ° E ° 2 ° 6 ° 4 ° 5 ° 3 °	$ \begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $				

Spacing between pins:		5.08 mm (0.2")
Spacing between rows of pins:		27.94 mm (1.1")
Offset of earth pin from adjacent row:		2.54 mm (0.1")
Weight:		47 g
Rec. PCB hole diameter:	1.5 mm	
Static resistance of <u>each</u> primary:		610Ω
Static resistance of <u>each</u> secondary:		800Ω
Distortion (source impedance 600Ω):		+ 20 dBU < 0.1% @ 50 Hz
		+30 dBU < 1 % 0.50 Hz
Self resonance point :		> 60 kHz
Recommended load for best square-wave response:		22 k Ω in series with 1nF
Frequency response (source 600Ω , load 15 k Ω)		5 Hz 50 kHz +/- 0.2 dB
Loss across transformer (at 1 kHz with above termination):		0.5 dB
Isolation between windings / between windings and shield	l:	4 kV / 2 kV

Isolation between windings / between windings and shield:

Suggested connections:

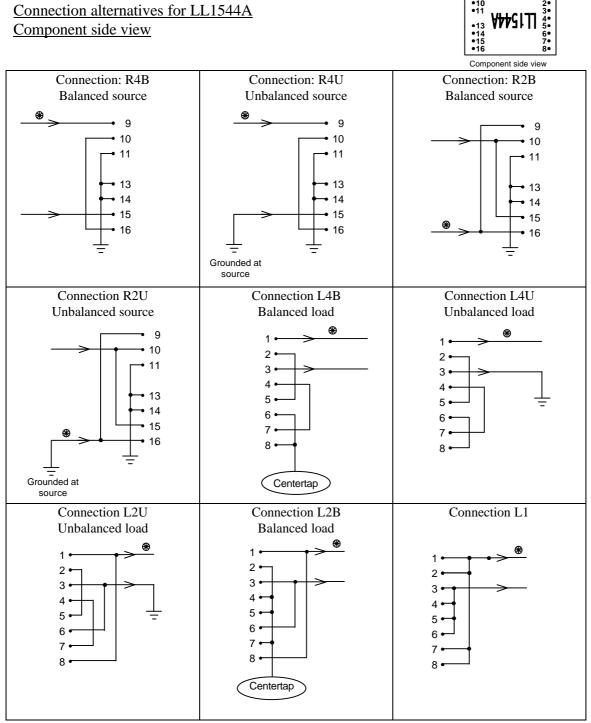

Audio Transformer LL1544A

LL1544A is a line input / general purpose audio transformer which can be used in many different applications ranging from bridging input to microphone input applications. The transformer is built up from two three-section coils with interleaved Faraday shields. The core is a two-component amorphous strip core. This core type combines a high sensitivity for very low signal levels with excellent high-level capabilities. In addition, as this type of core does not store energy (unlike conventional mu-metal cores), at low frequencies phase response is excellent and resonance with a series capacitor is practically eliminated.

The LL1544A replaces previous types LL1544 and LL1554.

1 + 1 + 1 + 1 : 2 + 2 30 x 22.5 x 14.5

Dims: (Length x Width x Height above PCB (mm)) Pin Layout (viewed from pins side) and Windings Schematics:



Spacing between rows of pins:	22.86 mm (0.9")		
Weight:	27 g		
Rec. PCB hole diameter:	1.5 mm		
Static resistance of <u>each</u> primary (average):	130 Ω		
Static resistance of <u>each</u> secondary (average):	260 Ω		
Self resonance point:	> 220 kHz		
Recommended load for best square-wave response	$6.7 \text{ k}\Omega + 470 \text{ pF}$		
(Termination alternative A below):			
Frequency response (source 600Ω ,	10 Hz - 70 kHz +/- 0.5 dB @ 0 dBU		
load (6.7 k Ω + 470 pF) in parallel with 56 k Ω):			
Loss across transformer (at 1kHz with termination as above):	0.2 dB		
Isolation between windings / between windings and shields:	3 kV / 1.5 kV		

Data at different termination alternatives, showed on the following page:

	1		01	0	
Termination Alternative	Turns	Copper	Idle impedance	Suggested Use	THD < 0.5% @50 Hz
	ratio	Resistance	@40 Hz, 0dBU		primary level / real
		Prim/sec			source impedance
R4B / R4U : L4B / L4U	1:1	520Ω / 520Ω	$80k\Omega$ / $80k\Omega$	$10~k\Omega$ / $10~k\Omega$	$20 \; dBU \; / \; 600 \Omega$
R2B / R2U : L2B / L2U	1:1	130Ω / 130Ω	$20k\Omega$ / $20k\Omega$	600Ω / 600Ω	$14 \text{ dBU} / 150 \Omega$
R2B / R2U : L4B / L4U	1:2	130Ω / 520Ω	$20k\Omega$ / $80k\Omega$	600Ω / 2.5 $k\Omega$	$14 \text{ dbU} / 150 \Omega$
R4B / R4U : L2B / L2U	2:1	520Ω / 130Ω	$5k\Omega$ / $20k\Omega$	$10~k\Omega$ / $2.5~k\Omega$	22 dBU / 37.5Ω
R4B / R4U : L1	4:1	520Ω / 65Ω	$80k\Omega$ / $5k\Omega$	$10~k\Omega$ / 600Ω	22 dBU / 37.5Ω

Connection alternatives for LL1544A Component side view

• 9 •10 •11

1• 2• 3• 4• 5•

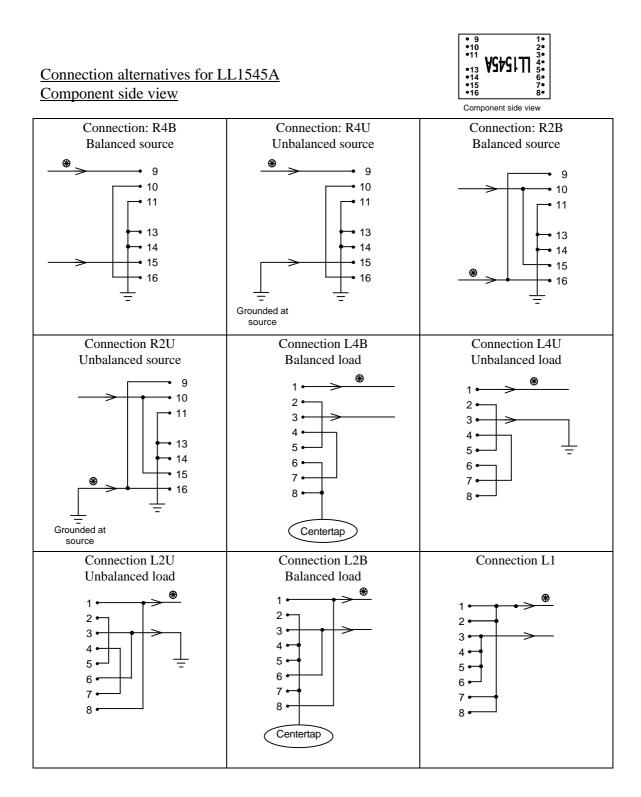
Turns ratio	Application	Transformer Input (primary)	Transformer Output (secondary)
1:1	Line input to unbalanced circuits	R4B / R4U	L4U
1:2	Line input to unbalanced circuits	R2B / R2U	L4U
2:1	Line input to unbalanced circuits	R4B / R4U	L2U
1:1	Low impedance line input to unbalanced circuits	R2B / R2U	L2U
1:1	Line input to balanced circuits	R4B / R4U	L4B
1:2	Line input to balanced circuits	R2B / R2U	L4B
2:1	Line input to balanced circuits	R4B / R4U	L2B
1:1	Low impedance line input to balanced circuits	R2B / R2U	L2B

Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN International Don Phone +46 - 176 13930 0176 Fax +46 - 176 13935 0176

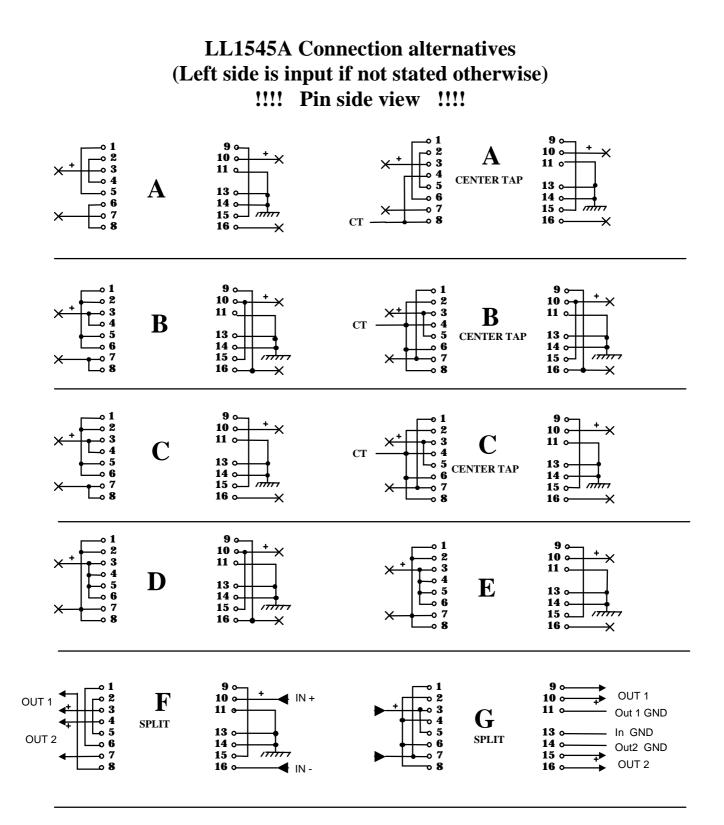
Domestic 0176-13930 0176-13935

Audio Transformer LL1545A

LL1545A is a general-purpose audio transformer with a variety of connection alternatives. The transformer is built up from two coils, each with a secondary winding surrounded by shields and two primary windings. This structure results in an excellent frequency response. The transformer can be used in many different applications such as a high impedance line input transformer (accepting signal levels of 22 dBU @ 40 Hz with primaries in series), for splitting or as a microphone input transformer.


The LL1545A is made with a mu-metal core and is housed in a mu-metal can.

Refer to page 2 of this sheet for termination alternatives.


Turns ratio: Dims: (Length x Width x Height		1 + 1 + 1 + 1 : 2 + 2 37 x 22.5 x 14.5
Pin Layout (viewed from compo	<u>nent</u> side) and windings s	schematics:
		1
<u>◦ 8</u> 16 ◦		2 — t t t t t t t t t t t t t t t t t t
07 15 0 06 14 0		₃ ∠ { 10
LL1545A 13 o		4 11
• 4 (top view)		8+ 14
0 3 11 0 0 2 10 0		7+ b + 16
01 90		
		6 / (15
		Can + Core 13
Spacing between pins: Spacing between rows of pins: Weight: Rec. PCB hole diameter Static resistance of windings:	2-3 or 6-7 1-4 or 5-8 9-10 or 15-16	2.54 mm (0.1") 22.86 mm (0.9") 46 g 1.5 mm 122 Ω 182 Ω 305 Ω
Self resonance point:		> 220 kHz
Recommended load for best squa	are-wave response	
(Termination alternative R4B:L	-	$6.7 \mathrm{k}\Omega + 470 \mathrm{pF}$
Frequency response (source 6009	Ω,	10 Hz - 70 kHz +/- 0.5 dB @ 0 dBU
load (6.7 k Ω + 470 pF) in		
Loss across transformer (at 1 kH	-	ve): 0.3 dB
Core:		Mu-metal
Isolation between windings / betw	ween windings and shield	ds: 3 kV / 1.5 kV

Data at different termination alternatives, showed on page 2 of this data sheet.

Termination Alternatives	Turns	Copper Resistance	Idle impedance	Suggested Use	THD < 0.2% @40 Hz
	ratio	Prim/sec	@40 Hz, 0dBU		primary level /
					real source impedance
R4B / R4U : L4B / L4U	1:1	$610~\Omega$ / $610~\Omega$	$80~k\Omega$ / $80~k\Omega$	$10~k\Omega$ / $10~k\Omega$	$22 \text{ dBU} / 600 \Omega$
R2B / R2U : L2B / L2U	1:1	$150~\Omega$ / $150~\Omega$	$20~\mathrm{k}\Omega$ / $20~\mathrm{k}\Omega$	$600~\Omega$ / $600~\Omega$	16 dBU / 150 Ω
R2B / R2U : L4B / L4U	1:2	$150~\Omega$ / $610~\Omega$	$20~\mathrm{k}\Omega$ / $80~\mathrm{k}\Omega$	$600~\Omega$ / $2.5~k\Omega$	16 dbU / 150 Ω
R4B / R4U : L2B / L2U	2:1	$610~\Omega$ / $150~\Omega$	$80~k\Omega$ / $20~k\Omega$	$10~k\Omega$ / $2.5~k\Omega$	22 dBU / 37.5 Ω
R4B / R4U : L1	4:1	610 Ω / 75 Ω	$80~k\Omega$ / $5~k\Omega$	$10~k\Omega$ / $600~\Omega$	22 dBU / 37.5 Ω

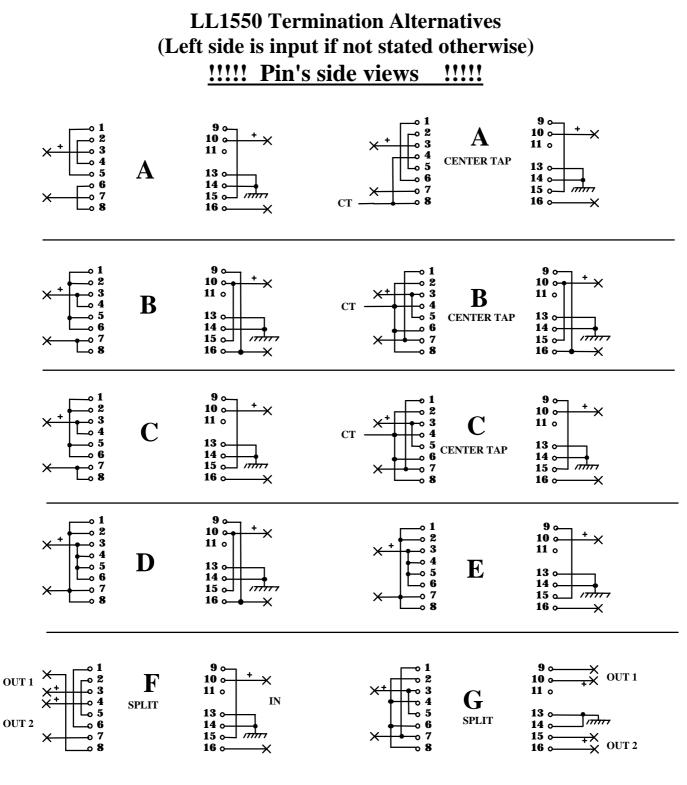
Turns ratio	Application	Transformer Input (primary)	Transformer Output (secondary)
1:1	Line input to unbalanced circuits	R4B / R4U	L4U
1:2	Line input to unbalanced circuits	R2B / R2U	L4U
2:1	Line input to unbalanced circuits	R4B / R4U	L2U
1:1	Low impedance line input to unbalanced circuits	R2B / R2U	L2U
1:1	Line input to balanced circuits	R4B / R4U	L4B
1:2	Line input to balanced circuits	R2B / R2U	L4B
2:1	Line input to balanced circuits	R4B / R4U	L2B
1:1	Low impedance line input to balanced circuits	R2B / R2U	L2B

Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN International Domestic Phone +46 - 176 13930 0176-13930 Fax +46 - 176 13935 0176-13935

Audio Transformer LL1550

LL1550 is an audio transformer with rather high turns ratio and with a variety of connection alternatives. The transformer is built up from two coils, each with a secondary winding surrounded by shields and two primary windings. This structure results in an excellent frequency response. All winding ends are available on the pins. The transformer is ideally used in applications where the high turns ratio is utilized, e.g. in a D.I. box. The LL1550 is made with amorphous core material. As this type of core does not store energy (unlike conventional mu-metal cores) the low frequency resonance with external capacitors is practically eliminated. Refer to the back side of this sheet for termination alternatives.

Dims:		eight above PCB (mm)) ns side) and Windings Schem	atics:	1 + 1 + 1 + 1 : 4 + 4 30 x 22.5 x 14.5
	03 04 05 06 07	10 o 11 o 13 o	$1 \xrightarrow{+} \\ 2 \xrightarrow{+} \\ 3 \xrightarrow{+} \\ 4 \xrightarrow{-} \\ 5 \xrightarrow{-} \\ 6 \xrightarrow{-} \\ 7 \xrightarrow{+} \\ + \xrightarrow{+} \\ + \xrightarrow{+} \\ + \xrightarrow{-} \\ +$	$ \begin{array}{c} $
-	ng between pins:			2.54 mm (0.1")
-	ng between rows of pir	18:		22.86 mm (0.9")
Weigł				30 g
Rec. I	CB hole diameter:			1.5 mm
Static resistance of <u>each</u> primary (average):				33 Ω
Static	resistance of each sec	ondary (average):		265 Ω
Self-r	esonance point:			> 280 kHz
	-	square-wave response		
	ermination alternative A			$6.7 \text{ k}\Omega + 470 \text{ pF}$
Frequ	ency response			
-	• •	Ω + 470 pF) in parallel with 50	6 kΩ):	10 Hz - 70 kHz +/- 0.5 dB @ 0 dBU
Loss across transformer (at midband with termination as above):			0.3 dB	
Core:				Amorphous Strip
	ion between windings	/ between windings and shield	ds:	3 kV / 1.5 kV

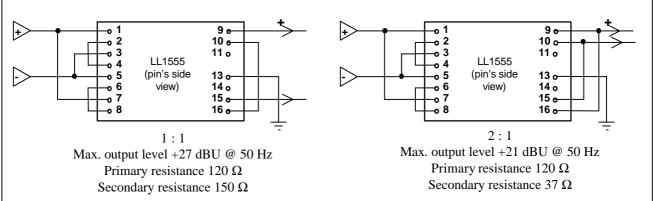

Data at different termination alternatives, showed on the back side of this sheet:

Termination	Turns	Copper Resistance	No load	Suggested Use	THD < 0.5% @40 Hz
Alternative	ratio	prim/sec	impedance		primary level /
			@40 Hz, 0dBU		real source impedance
А	1:2	130Ω / 530Ω	$40k\Omega$ / $160k\Omega$	$600~\Omega$ / $10~k\Omega$	$12 \text{ dBU} / 150 \Omega$
В	1:2	33Ω / 133Ω	$10k\Omega$ / $40k\Omega$	200Ω / $10~k\Omega$	$6~dBU$ / 40Ω
С	1:4	33Ω / 530Ω	$10k\Omega$ / $160k\Omega$	200Ω / $5k\Omega$	$6~dbU$ / 40Ω
D	1:4	8Ω / 133Ω	$2.5k\Omega$ / $40k\Omega$	200Ω / $1k\Omega$	-1 dBU / 10Ω
Е	1:8	8Ω / 530Ω	$2.5k\Omega$ / $160k\Omega$	200Ω / $10k\Omega$	-1 dBU / 10Ω

$F \text{ (Split)} \qquad 4{:}1{+}1 \quad 530\Omega \ / \ 66\Omega + 66\Omega$

G (Split) $1:2+2 \quad 33\Omega / 265\Omega + 265\Omega$ Left side can also be connected as B_{CenterTap} (1:1+1) or D (1:2+2)

Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN


Audio Output Transformer LL1555

LL1555 is an audio output transformer for balanced drive. The winding arrangement is such that, connected as shown below, each secondary winding is surrounded by cold primary winding ends. The transformer is ideally used with a mixed feedback drive circuit (refer to our separate sheet). The secondaries can be connected in parallel (for low output impedance) or in series.

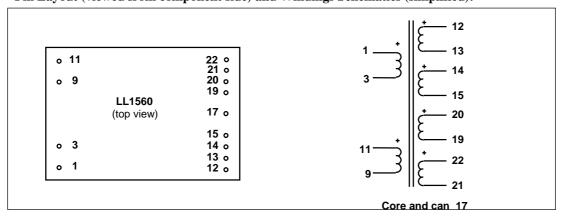
The LL1555 is made with an audio C-core of our own production and is housed in a mu-metal housing.

Turns ratio: Dims: (Length x Width x Height above PCB (mm)) Pin Layout (viewed from pins side) and Windings Sc	1 + 1 + 1 + 1 : 1 + 1 33 x 26x 20 hematics:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1 \circ + + \circ 9$ $3 \circ + + \circ 10$ $8 \circ + + \circ 16$ $6 \circ + + \circ 16$ $6 \circ + + \circ 15$ $5 \circ $

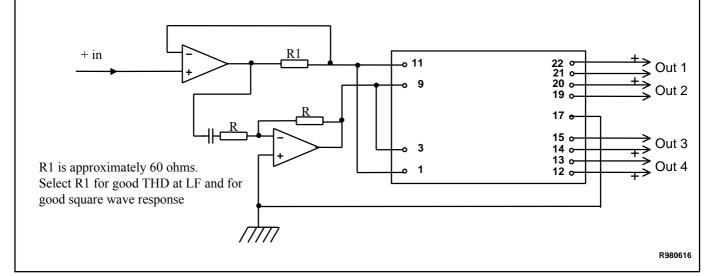
Spacing between pins:	2.54 mm (0.1")
Spacing between rows of pins:	22.86 mm (0.9")
Weight:	59 g
Rec. PCB hole diameter:	1.5 mm
Static resistance of <u>each</u> primary (average):	120 Ω
Static resistance of <u>each</u> secondary (average):	75 Ω
Max. primary level (primaries connected as below):	+27 dBU @ 50 Hz
Leakage inductance of secondaries (sec. in series):	1.0 mH
No-load impedance(primaries connected as below):	$>2k\Omega$ @ 50 Hz, @+14 dBU primary level
Balance of output (according to IRT, source < 10 Ω , Load 600 Ω)	> 60 dB
Frequency response (source 10Ω , load 600Ω):	10 Hz 40 kHz +/- 0.3 dB
Isolation between primary and secondary windings/	
between windings and core:	4 kV / 2 kV
Suggested usage	

Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN International Domestic Phone +46 - 176 13930 0176-13930 Fax +46 - 176 13935 0176-13935

1 + 1


Audio Split Transformer LL1560

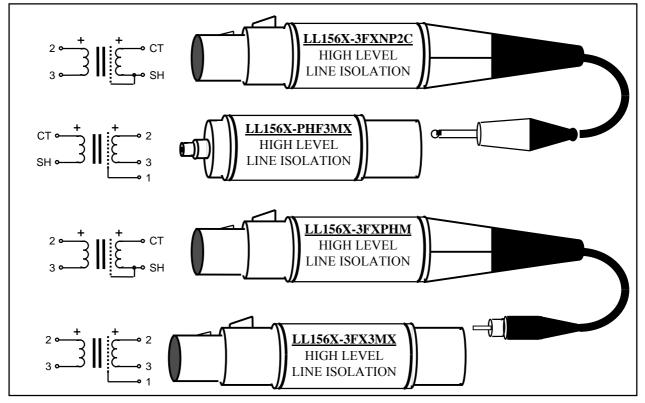
LL1560 is an audio transformer specially built for active splitting.


Each of the four secondary windings is surrounded by primary winding parts. This results in a low leakage inductance and ensures that output signal is maintained on three of the secondary windings even if one is short-circuited, provided of course that driving power is available.

The primary windings should be used in parallel.

Turns ratio:	2 + 2 : 1 + 1 + 1
Dims: (Length x Width x Height above PCB (mm))	47 x 34 x 23
Pin Layout (viewed from component side) and Windings Schematic	s (simplified):

Housing:	Mu-metal
Core:	Audio C-core
Spacing between pins:	2.54 mm (0.1")
Spacing between rows of pins:	35.56 mm (1.4")
Weight:	130 g
Rec. PCB hole diameter:	1.5 mm
Static resistance of <u>each</u> primary (average):	120 Ω
Static resistance of <u>each</u> secondary (average):	55 Ω
Secondary leakage inductance (secondaries in series, primary short circuited):	< 1 mH
Max. secondary level (each secondary)	+ 26 dBU @ 50 Hz
No-load primary impedance(primaries in parallel, primary level):	$> 1 \text{ k}\Omega$ @ 50 Hz, +20 dBU
Balance of output (according to IRT, source 10Ω , Load 600Ω):	> 60 dB
Frequency response	
(source 10 Ω , each sec. loaded with 600 Ω , 0 dBU sec. level):	20 Hz - 50 kHz +/- 0.5 dB
Isolation between windings / between windings and shields:	4 kV / 2 kV


Driving circuitry, mixed feedback, 2:1+1+1+1, suggested by A. Offenberg, NRK

High Level, High Impedance Ground Isolation Unit Balanced to Unbalanced Converter <u>LL156X</u>

The XLR inline transformer unit LL156X is designed for breaking up ground loops and for balanced-to-unbalanced conversion in mobile or stationary audio systems. The unit is magnetically shielded and contains a high impedance input transformer LL1565, with LF saturation above +22 dBU, 40 Hz.

The two ends of the unit are galvanically isolated from each other.

The LL156X is available in four versions:

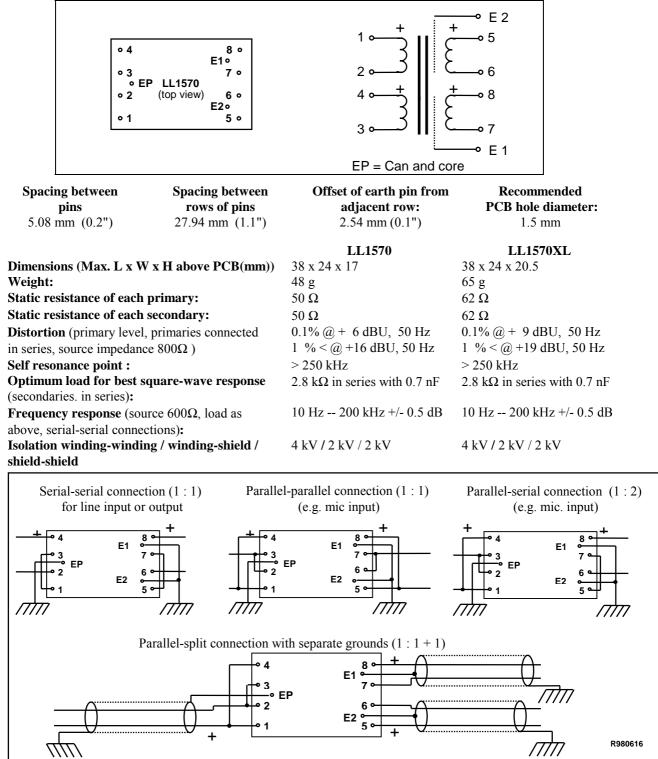
LL156X-3FXNP2CFemale XLR connector to 2-pole 'A'-gauge 1/4" jack plugLL156X-PHF3MXFemale Phono (RCA) connector to male XLR connectorLL156X-3FXPHMFemale XLR connector to Phono (RCA) maleLL156X-3FX3MXFemale XLR connector to male XLR connector

Characteristics of built in transformer LL1565

Static resistance of primary:	1.6 kΩ
Static resistance of secondary:	1.3 kΩ
Core:	Amorphous strip core
Max level:	+22 dBU @ 40 Hz
No-load impedance (@20 dBU, 50Hz)	220 k Ω typically
Frequency response @ 0 dBU (source 600 Ω , load 10k Ω)	4 Hz - 100 kHz +/- 0.5 dB
Distortion (THD, source 600 Ω)	< 0.2 % @ 50 Hz, 0 - 22 dBU
Loss across transformer, load 10k Ω / 100k Ω	2.2 dB / 0.3 dB
Isolation between windings:	1 kV

Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN

Transformers for splitting LL1570 and LL1570XL

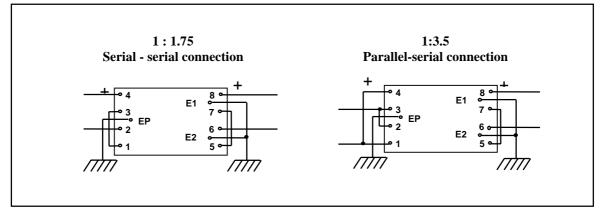

The LL1570 is designed for splitting signals in application where large ground differences may appear, but is also very useful as a general purpose audio transformer. By careful design, the capacative coupling between the different part of the transformer is kept to a minimum. The three-section winding structure which is necessary for decoupling also results in a very high bandwidth. The transformer is built up from two coils, each with primary and secondary windings separated by electrostatic shields, and a high permeability mu-metal core. The two coil structure in combination with the mu-metal can results in high immunity to external magnetic fields.

1 + 1 : 1 + 1

In the LL1570XL, the core is about 45% larger than in the LL1570, resulting in a larger level capability.

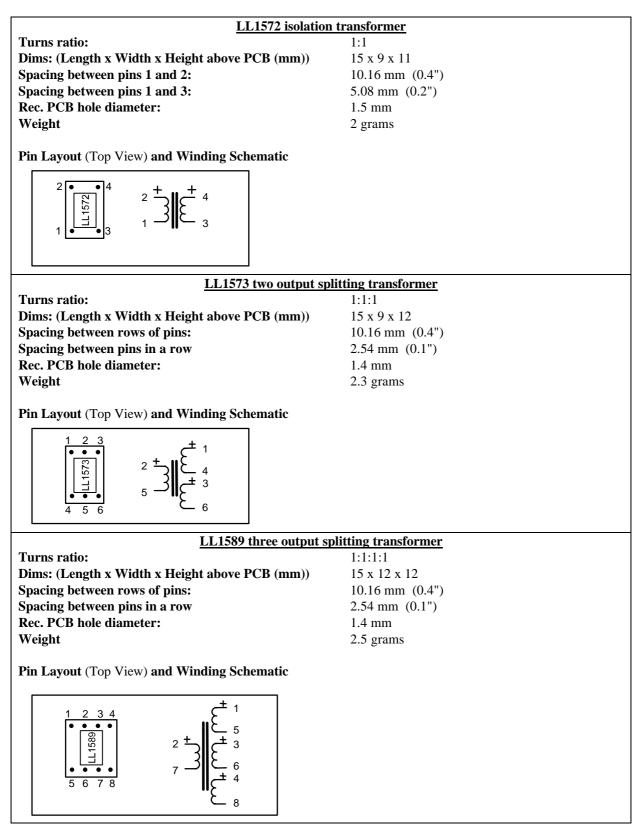
Turns ratio:

Pin layout (viewed from <u>component</u> side) and winding schematics:



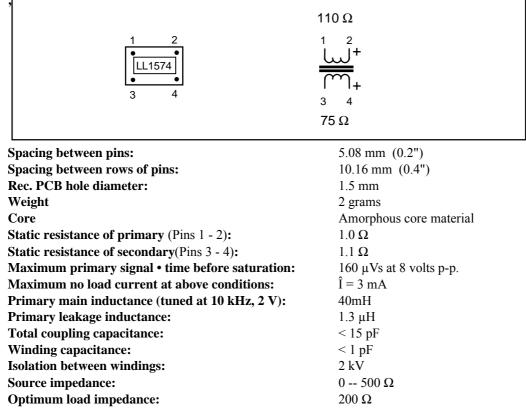
Microphone Input Transformer LL1571

LL1571 is a microphone input transformer built up from two coils and a high permeability mu metal core. Each coil is wound in three sections with electrostatic shields connected to separate pins. This result in a transformer with a very broad band, also ideal for splitting purpose. The two-coil structure in combination with the mu-metal can results in a high immunity to external magnetic fields.



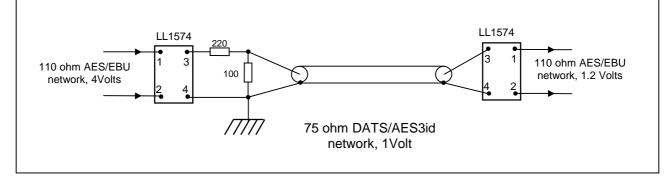
Digital audio transformers LL1572 (1:1), LL1573 (1:1:1) and LL1589 (1:1:1:1)

The LL1572, LL1573, LL1589 are pulse transformer designed for digital audio. They are designed with a rather large amorphous metal core and have thus low copper resistance, high signal tolerance and low internal capacitance. The amorphous core has a very high mu. Thus, when used, the transformer should be protected from DC current.



AES - DATS conversion transformer LL1574

LL1574 is a pulse transformer designed for impedance matching between 110 Ω and 75 Ω systems. The transformer has a large amorphous metal core which results in low copper resistance, high signal tolerance and low internal capacitance.


Turns ratio:	1:1.2
Impedance ratio	75:110
Dims: (Length x Width x Height above PCB (mm))	15 x 9 x 11

Pin Layout (Top View) and Winding Schematic

Application example:

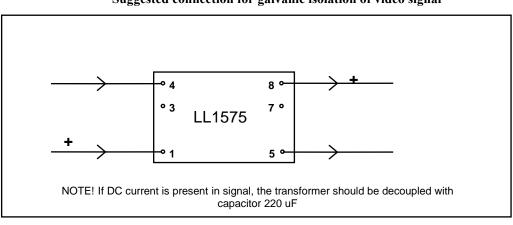
Interface between 110 ohms AES/EBU and 75 ohms DATS/AES3id networks

Turns ratio:

29 x 22 x 14 mm

1:1

Video Isolation Transformer LL1575


LL1575 is a high bandwidth video isolation transformer for CCTV (closed circuit television). Due to the very wide bandwidth required in CCTV applications, the LL1575 is wound with a special, bifilar winding technique and uses our unique amorphous strip core.

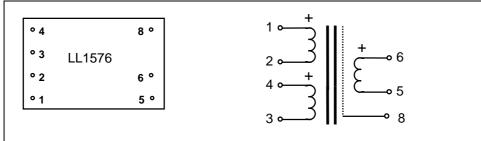
Pin layout (top view) and winding sch	
°4 8° ° ³ LL1575 ⁷ ° °1 5°	$1 \stackrel{+}{\longrightarrow} 1 \stackrel{+}{\longrightarrow} 8$ $7 \stackrel{+}{\longrightarrow} 3$ $4 \stackrel{+}{\longrightarrow} 5$
pacing between pins: pacing between rows of pins: Veight: Rec. PCB hole diameter: tatic resistance of primary:	5.08 mm (0.2") 22.86 mm (0.9") 22 g 1.5 mm 4.5 Ω

Static resistance of secondary : 4.5 Ω 0.5 dB Signal loss (source 75Ω , load 75Ω) Primary no-load impedance (300 Hz, 7V rms) $> 3.5 \text{ k}\Omega$ **Frequency response** $(1V p-p sinus. Source 75\Omega, load 75\Omega)$: 20 Hz - 11 MHz +0 /- 3 dB 2 kV rms

Isolation between primary and secondary windings:

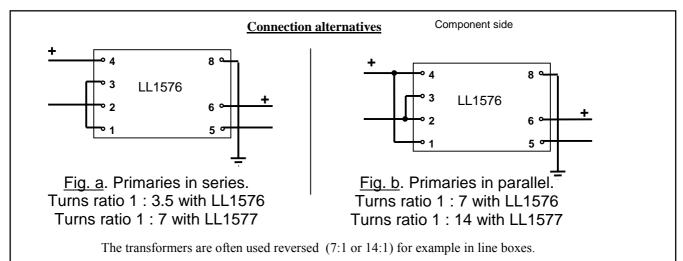
Dims (Length x Width x Height above PCB (mm)):

Suggested connection for galvanic isolation of video signal



Microphone Input Transformers, Line-box Transformers LL1576 and LL1577

The LL1576 and the LL1577 are high performance microphone input transformers/line-box transformers with high permeability mu-metal cores and high bandwidth coils. The LL1576 and the LL1577 use the same pin-out as our well known microphone transformer LL1538.


In both types, primary and secondary windings are separated by electrostatic shields. The very low leakage inductance and thus excellent frequency response is achieved by a two-coil, three-section per coil winding structure. The transformers are encapsulated in mu-metal cases for magnetic shielding.

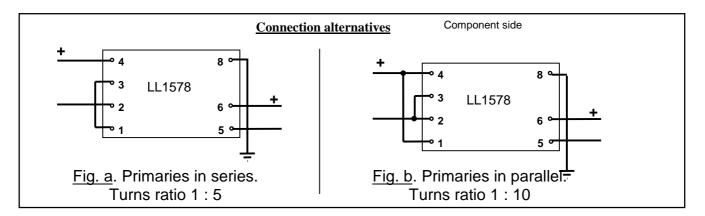
Pin layout (component side view) and winding schematics:

Dimensions Max. Length x Width x	Spacing between pins	Spacing between rows of pins	Recommended PCB hole diameter	Weight
Height above PCB (mm)	between phis	lows of pills		
38 x 24 x 17	5.08 mm (0.2")	27.94 mm (1.1")	1.5 mm	46 g

	LL1576	LL1577
Turns ratio	1+1:7	1+1:14
Static resistance of each primary	50 Ω	12 Ω
Static resistance of secondary	1.5 kΩ	1.5 kΩ
Primary level at 0.2 % THD, 50 Hz signal Primaries connected in parallel (fig b), source impedance 50Ω	+2 dBU (sec. level +19 dBU)	-4 dBU (sec. level +19 dBU)
Primary level at 1 % THD, 50 Hz signal Primaries connected in parallel (fig b), source impedance 50Ω	+ 12 dBU (sec. level +29 dBU	+6 dBU (sec level +29 dBU)
Frequency response +/- 0.5 dB to balanced input Signal level 0 dBU, source 200 Ω , fig b, no termination	15Hz – 50kHz	30Hz – 12kHz
Frequency response +/- 0.5 dB to balanced input	5Hz – 40kHz	10Hz – 50kHz
Signal level -10 dBU, source 50 Ω , fig b, load:	$30 \text{ k}\Omega + 200 \text{pF}$	$80 \text{ k}\Omega + 100 \text{pF}$
Isolation between windings / between windings and shield	4 kV / 2 kV	4 kV / 2 kV

Microphone Input Transformers, Line-box Transformers LL1578 and LL1578XL

The LL1578 and the LL1578XL are high performance microphone input transformers/line-box transformers with high permeability mu-metal cores and high bandwidth coils. The LL1578 and the LL1578XL use the same pin-out as our well known microphone transformer LL1538.

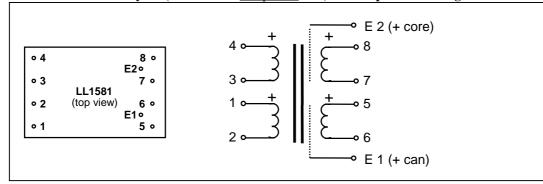

In the LL1578XL the core is about 45% larger than in the LL1578, resulting in a higher signal level capability. In both types, primary and secondary windings are separated by electrostatic shields. The very low leakage inductance and thus excellent frequency response is achieved by a two-coil, three-section per coil winding structure. The transformers are encapsulated in mu-metal cases for magnetic shielding.

Pin layout (component side view) and winding schematics:

° 4	8 °	
° ³ LL1578		
° 2	6 °	
° 1	5 °	, , , , , , , , , , , , , , , , , , ,

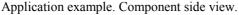
Turns ratio	Spacing between pins	Spacing between rows of pins	Recommended PCB hole diameter	Isolation between windings / between windings and shield
1 + 1 : 10	5.08 mm (0.2")	27.94 mm (1.1")	1.5 mm	4 kV / 2 kV

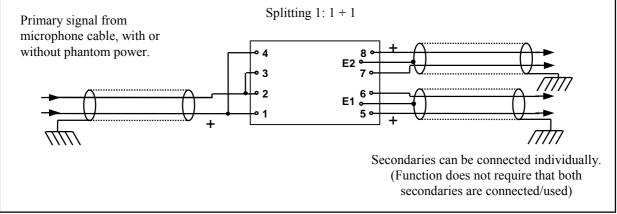
	LL1578	LL1578XL
Dimensions	38 x 24 x 17	38 x 24 x 20.5
Max. Length x Width x Height above PCB (mm)		
Weight	46 g	65 g
Static resistance of each primary	12 Ω	15 Ω
Static resistance of secondary	880 Ω	960 Ω
Primary level at 0.2 % THD, 50 Hz signal	-5 dBU	0 dBU
Primaries connected in parallel (fig b), source impedance 50Ω	(sec. level +15 dBU)	(sec. level +20 dBU)
Primary level at 1 % THD, 50 Hz signal	+ 4 dBU	+12 dBU
Primaries connected in parallel (fig b), source impedance 50Ω	(sec. level +24 dBU	(sec level +32 dBU)
Frequency response +/- 0.5 dB to balanced input	30Hz – 20kHz	20Hz – 20kHz
Signal level 0 dBU, source 200 Ω , fig b, no termination		
Frequency response +/- 0.5 dB to balanced input	10Hz – 70kHz	6Hz – 50kHz
Signal level -10 dBU, source 50 Ω , fig b, load:	40 k Ω + 200pF	50 k Ω + 200pF

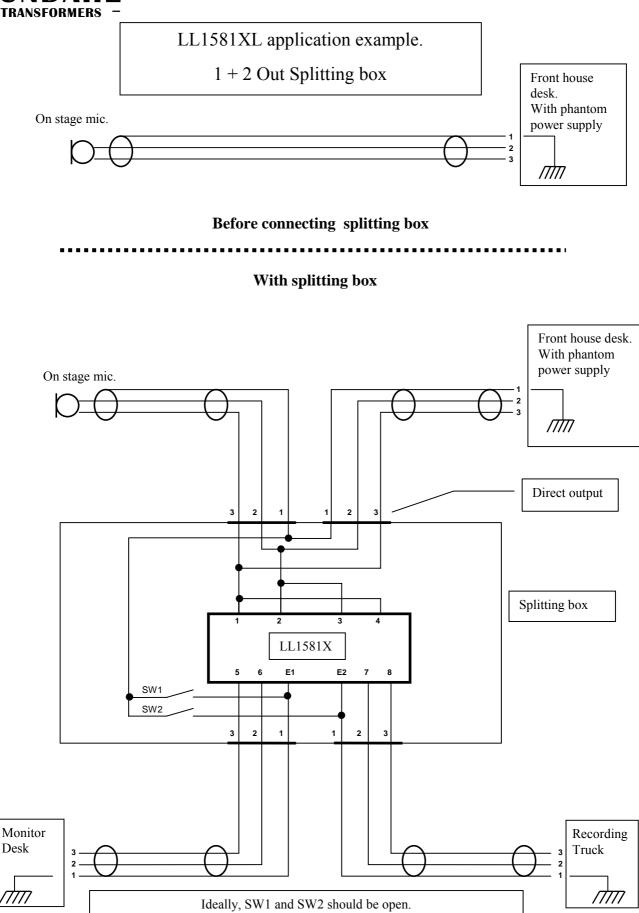

Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN International Domestic Phone +46 - 176 13930 0176-13930 Fax +46 - 176 13935 0176-13935

LL1581XL Splitting Transformer

In many splitting applications, the splitting transformer must have a high immunity to input common mode signals, to stray magnetic fields from e.g. power transformers and to large ground potential differences in receiving systems. The LL1581XL is developed to handle those types of problems. When designing the LL1581, we have used our well established two coil structure to create a transformer with a high degree of symmetry. The transformer is built up from two primary windings (which should be used in parallel) and two secondary windings. Each secondary winding is built up from two sections, one from each coil. Its own electrostatic shields surround each secondary section. The symmetric structure results in an internal cancellation of noise signals caused by external magnetic field. It also increase immunity to ground noise between secondary systems and reduces the effects of input common mode signals. The transformer is housed in a mu-metal can and is impregnated in solventless epoxy resin.


Turns ratio:

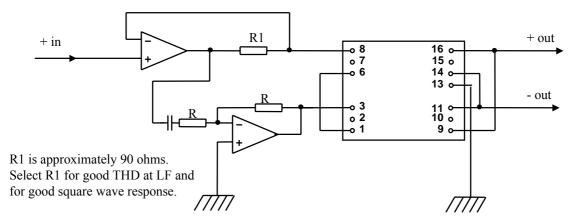

1+1:1+1**Pin layout** (viewed from component side) **and simplified winding schematics:**


Spacing between	Spacing between	Offset of earth pins from adjacent row:	Recommended
pins	rows of pins		PCB hole diameter:
5.08 mm (0.2")	27.94 mm (1.1")	2.54 mm (0.1")	1.5 mm

Dimensions (Max. L x W x H above PCB(mm))	38 x 24 x 20.5
Weight:	61 g
Static resistance of each primary:	61 Ω
Static resistance of each secondary (Pins 5 - 6 and pins 7 to 8):	51 and 71 Ω
Self resonance point :	> 200 kHz
Distortion	0.1% @ +3 dBU, 50 Hz
	1 % < @ +13 dBU, 50 Hz
Frequency response (Ref : -6 dBu, 1kHz)	10 Hz 100 kHz +/- 0.5 dB
Test arrangement: Parallel input - parallel output . Source 150Ω , load 10 k Ω	
CMRR at 20 kHz (Source 600 ohms, load 2 x 10k)	> 60 dB
CMRR at 20 kHz from sec. to sec. (Source 600 ohms, load 2 x 10k)	> 40 dB
Isolation test primary - secondary / secondary - secondary / E1 - E2	4 kV / 2 kV / 1 kV RMS
Amplication arounds. Common and side view	

 $Close \; SW1 \; and \; / \; or \; SW2 \; when \; E1 \; and \; / \; or \; E2 \; do \; not \; receive \; ground \; reference \; from \; Monitor \; desk \; or \; from \; Recording \; truck \; respectively.$

R990308

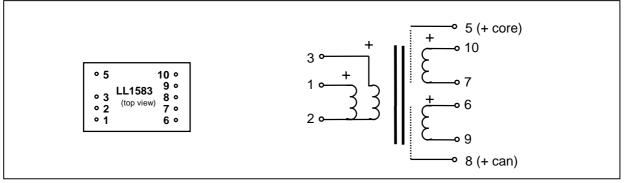

Audio Output Transformer LL1582

- LL1582 is an audio output transformer for balanced or unbalanced drive, with the following features:
- 1. Pin compatible with the popular LL2811
- 2. With internal shields to improve common mode passthrough rejection. This is important in analog output from digital systems.
- 3. Suggested use: 2:1 (secondaries in parallel) with e.g. NE5532 op amps for low noise.
- 4. Precision made audio C core for small size.
- 5. Two-coil structure and mu-metal housing for high magnetic noise immunity.
- 6. Designed to fit three in a row across a Euroboard.

The secondaries can be connected in parallel for low output impedance or in series for high output level.

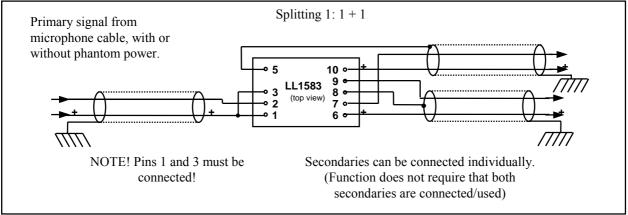
Turns ratio: Dims: (Length x Width x Height above PCB (mm)) Pin Layout (viewed from <u>component</u> side) and Windings Scl	1 + 1: 1 + 1 31 x 26x 23 hematics:
• 8 160 • 7 1 00 • 6 1 00 3 0 • 6 140 3 0 3 0 • 3 110 3 0 8 0 • 3 110 90 6 0 • 1 90 6 0 6 0	$\begin{array}{c} + & + & 9 \\ & & 11 \\ + & & 16 \\ & & 14 \\ & & 13 + \text{Can \& Core} \end{array}$
Spacing between pins: Spacing between rows of pins:	2.54 mm (0.1") 22.86 mm (0.9")
Weight:	65 g
Rec. PCB hole diameter:	1.5 mm
Static resistance of <u>each</u> primary (average):	45 Ω
Static resistance of <u>each</u> secondary (average):	45 Ω
Max. primary level (primaries in series)	+30 dBU @ 50 Hz
Leakage inductance (windings in series):	< 1 mH
No-load impedance(primaries in series, primary level):	> 750 Ω @ 50 Hz, +20 dBU
Balance of output (according to IRT, source $< 10 \Omega$, Load 600	0 Ω)
Output windings in pa	rallel 60 dB
Output windings in s	
Frequency response (source 10Ω , load 600Ω , 0 dBU):	10 Hz 100 KHz +/- 0.3 dB
Isolation between primary and secondary windings/between windings and shield:	4 kV / 2 kV

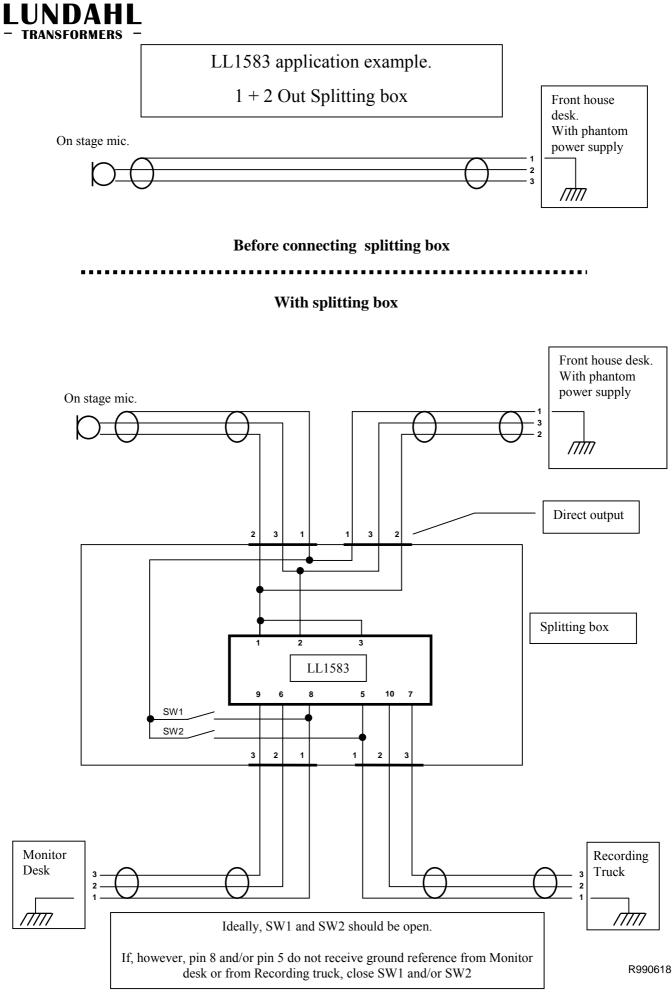
Suggested design of driving circuitry, mixed feedback, 2:1, suggested by A. Offenberg, NRK


Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN

LL1583 Small Size Splitting Transformer

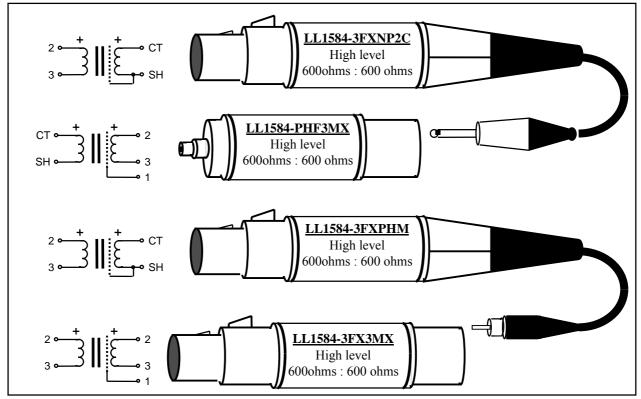
In many splitting applications, the splitting transformer must have a high immunity to input common mode signals, to stray magnetic fields from e.g. power transformers and to large ground potential differences in receiving systems. In the design of the LL1583, we have used our well established two coil structure to create a transformer with a high degree of symmetry. The transformer is built up from two primary windings (which should be used in parallel) and two secondary windings. Each secondary winding is built up from two sections, one from each coil. Its own electrostatic shields surround each secondary section. The symmetric structure results in an internal cancellation of noise signals caused by external magnetic field. It also increases immunity to ground noise between secondary systems and reduces the effects of input common mode signals.


The transformer is housed in a mu-metal can and is impregnated in solventless epoxy resin.


Pin layout (viewed from <u>component</u> side) and (simplified) winding schematics:

Spacing between pins	Spacing between rows of pins	Recommended PCB hole diameter:
2.54 mm (0.1")	20.32 mm (0.8")	1.3 mm
Turns ratio:		1:1+1
Dimensions (Max. L x W x H ab	oove PCB(mm))	28 x 17 x 15
Weight:		25 g
Static resistance of primary (in	parallel)	56 Ω
Static resistance of each seconda	ary (Pins 10 to 7 and pins 6 to 9):	95 and 130 Ω
Self resonance point :		> 200 kHz
Distortion		0.1% @ -2 dBU, 50 Hz
		1 % < @ 8 dBU, 50 Hz
Frequency response (Ref : -6 dB	u, 1kHz)	10 Hz 120 kHz +/- 0.5 dB
Test arrangement: P	arallel input - parallel output . Source 150	Ω , load 10 k Ω
CMRR at 20 kHz (Source 600 d	ohms, load 2 x 10k)	> 60 dB
CMRR at 20 kHz from sec. to se	ec. (Source 600 ohms, load 2 x 10k)	> 40 dB
Isolation test primary - seconda	ary / secondary - secondary / E1 - E2	4 kV / 2 kV / 1 kV RMS

Application example. Component side view.



High level, 600 ohms to 600 ohms transformer unit <u>LL1584</u>

The XLR inline transformer unit LL1584 is designed for breaking up ground loops and for balanced-to-unbalanced conversion in mobile or stationary audio systems. The unit is magnetically shielded and contains a medium impedance isolation transformer LL1584, with LF saturation above +17 dBU @ 50 Hz.

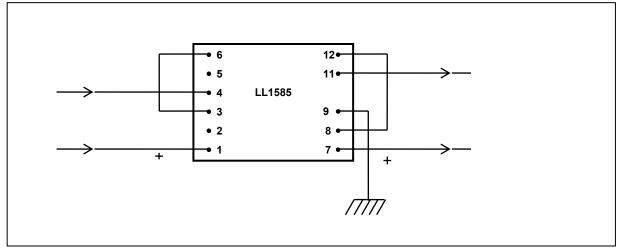
The two ends of the units are galvanically isolated from each other.

The LL1584 is available in four versions:

LL1584-3FXNP2C	Female XLR connector to 2-pole 'A'-gauge 1/4" jack plug
LL1584-PHF3MX	Female Phono (RCA) connector to male XLR connector
LL1584-3FXPHM	Female XLR connector to Phono (RCA) male
LL1584-3FX3MX	Female XLR connector to male XLR connector

Electrical characteristics

Transformer static resistance primary + secondary:	640 Ω	
Core:	Amorphous strip core	
Max signal level (THD less than 1%):	+17 dBU @ 50 Hz	
No-load impedance @0 dBU, 50Hz	11 kΩ typically	
Frequency response @ 0 dBU (source 150Ω , load $10k\Omega$)	10 Hz - 70 kHz +/- 0.5 dB	
Distortion (THD) at 50 Hz (source 150Ω)	< 0.2 % @ 50 Hz,	
	for all signal levels -2 through +16 dBU	
Loss across transformer with load $10k\Omega$	0.5 dB	
Isolation between input and output sides:	1 kV	

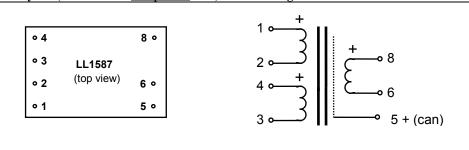


High Level Audio Output Transformer LL1585

LL1585 is a high level audio line output transformer for balanced or unbalanced drive. The transformer is built from two three-section coils, with primaries and secondaries separated by electrostatic shields, and a audio C-core of our own production. The transformer is housed in a mu-metal housing.

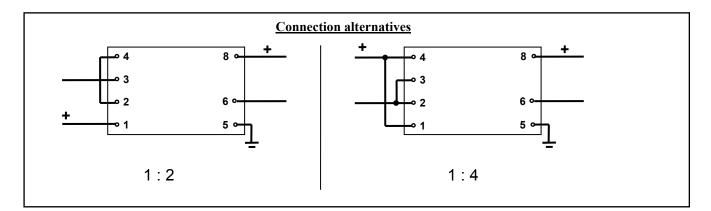
The LL1585 is (as all output transformers) ideally used with mixed feedback drive circuits. (See separate paper for mixed feedback design principles).

Turns ratio: Dims (Length x Width x Height above PCB (mm)): Pin layout (viewed from <u>component</u> side) and winding schematics:	1 + 1 : 1 + 1 47 x 34 x 21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 12 11
Spacing between pins:	5.08 mm (0.2")
Spacing between rows of pins:	35.56 mm (1.4")
Weight:	130 g
Core:	Audio C-core
Housing:	Mu-metal
Rec. PCB hole diameter:	1.5 mm
Static resistance of each primary:	64 Ω
Static resistance of each secondary:	64 Ω
Leakage inductance of secondaries (sec. in series):	0.4 mH
No-load impedance, typically (primaries in series):	6 k Ω @ 50 Hz, 15V RMS.
Optimum source impedance:	Minus 128 Ω (Mixed feedback drv)
Balance of output (according to IRT, source $< 10 \Omega$, Load 600 Ω):	> 60 dB
Maximum output level before saturation (sec. in series, load 600 Ω)	+ 28 dBU @ 20 Hz
Frequency response (source 10 Ω , load 600 Ω):	10 Hz 100 kHz +/- 0.3 dB
Loss across transformer (at midband with 600 Ω load): Isolation between primary and secondary windings / between	3 dB
windings and core: Suggested use	4 kV / 2 kV


Microphone Transformer LL1587

The LL1587 is small size microphone input transformer, with a high permeability mu-metal core and two two-section coils with internal Faraday shields. The transformer is housed in a mu-metal can.

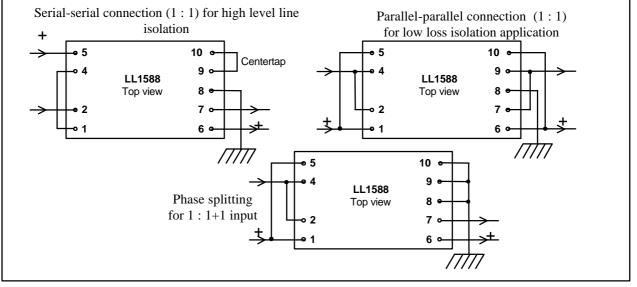
Turns ratio:


1 + 1 : 4

Pin layout (viewed from <u>component</u> side) and winding schematics:

Dimensions	Spacing	Spacing between	Recommended PCB	Weight
Max. Length x Width x	between pins	rows of pins	hole diameter	
Height above PCB (mm)				
28 x 17.5 x 12	3.81 mm(0.15")	20.32 mm (0.8")	1.5 mm	18 g

	LL1587
Turns ratio	1+1:4
Static resistance of each primary	56 Ω
Static resistance of secondary	600 Ω
Primary level at 0.2 % THD, 50 Hz signal Primaries connected in parallel, source impedance 150Ω	-9 dBU (typically) (sec. level +2 dBU)
Primary level at 1 % THD, 50 Hz signal Primaries connected in parallel, source impedance 150Ω	0 dBU (sec. level +11 dBU)
Frequency response +/- 1.0 dB Primary signal level -5 dBU, source 200 Ω Primaries in parallel, secondary termination 10k	15Hz – 150kHz +/- 1 dB
Optimum termination for best square-wave response (Connection 1:4, source imp. 200Ω , following stage input impedance < 10 k Ω)	no additional termination required
Optimum termination for best square-wave response (Connection 1:4, source imp. 200Ω , following stage input impedance >> 10 k Ω)	10 kΩ in series with 200 pF
Isolation between windings / between windings and shield	3 kV / 1.5 kV

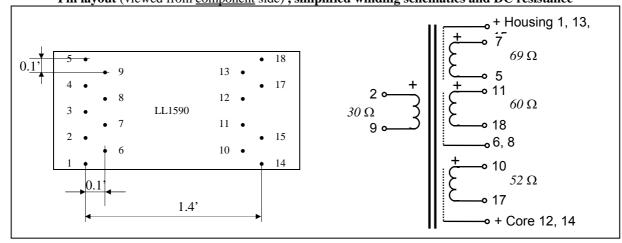


High Level General Purpose Transformer LL1588

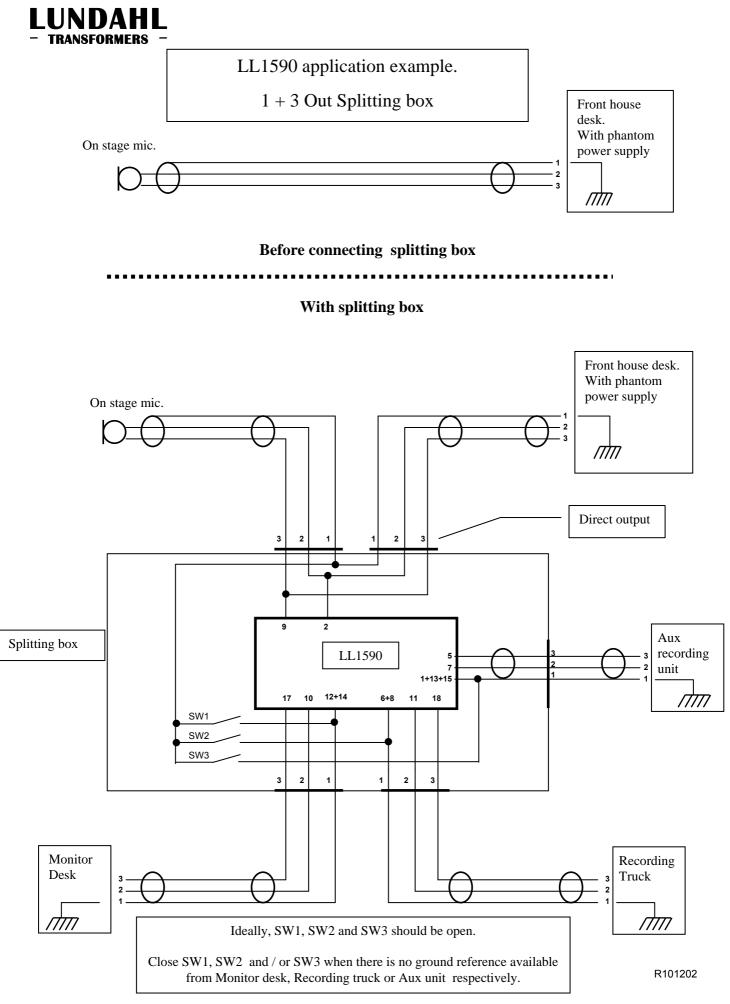
LL1588 is a high-level general-purpose transformer which can be used for microphone or line input, for line output and for galvanic isolation. The windings are arranged to give perfect symmetry if the transformer is used in phase splitting input applications. The two coils structure also greatly improves immunity to external magnetic fields from e.g. power supplies and motors. Primary and secondary windings are separated by electrostatic shields. The core is a high permeability mu metal core. The transformer is housed in a mu-metal can.

Turns ratio: Pin layout (view	ved from <u>component</u> side)	1+1:1+1 and winding schematics:
	10 ° 4 9 ° 4 1588 8 ° 7 ° 6 °	$1 \stackrel{+}{\longrightarrow} 10$ $2 \stackrel{+}{\longrightarrow} 10$ $5 \stackrel{+}{\longrightarrow} 6$ $4 \stackrel{+}{\longrightarrow} 6$ 8
	en rows of pins	5.08 mm (0.2") 35.56 mm (1.4") 1.5 mm 115 g 61 Ω 61 Ω + 25 dBU 0.1% @ 50 Hz
Distortion	(primaries connected in p source impedance 150Ω	
Self resonance Frequency resp	point: onse (source 150Ω, load 1 serial connection):	> 250 kHz 0 kΩ, 10 Hz 100 kHz +/- 1.0 dB
_	(deviation from linear ph en windings/ between wir	

Connection alternatives and suggested applications:

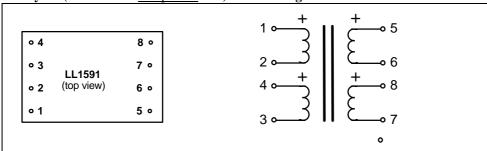


LL1590 Splitting Transformer, 1 direct + 3 isolated


In many splitting applications, the splitting transformer must have a high immunity to input common mode signals, to stray magnetic fields from e.g. power transformers and to large ground potential differences in receiving systems. The LL1590 is developed to handle those types of problems. When designing the LL1590, we have used our well established two coil structure to create a transformer with a high degree of symmetry. The primary winding consists of four sections, two on each coil, connected in parallel. The three secondary windings consists each of two sections, one from each coil, separated from the primary sections by electrostatic shields. The symmetric structure results in an internal cancellation of noise signals caused by external magnetic field. It also increase immunity to ground noise between secondary systems and reduces the effects of input common mode signals. The transformer is housed in a mu-metal can and is impregnated in epoxy resin.

Turns ratio:

atio: 1: 1 + 1 + 1Pin layout (viewed from <u>component</u> side), simplified winding schematics and DC resistance


Dimensions (Max. L x W x H above PCB(mm))	47 X 28 X 23
Recommended PCB hole diameter:	1.5 mm
Weight:	115 g
Static resistance of windings:	See above figure
Self resonance point :	> 200 kHz
Distortion	0.2% @ +6 dBU, 50 Hz
CMRR at 15kHz (according to IRT, source 600 ohm, load 1k)	Typically 50 dB
Frequency response (Ref : +1 dBu, 1kHz)	10 Hz 100 kHz +/- 0.5 dB
Test arrangement:	
Signal on input - outputs measured individually. Source 15	0Ω , load 10 k Ω
Isolation test: Any winding to shield or housing / shield – shield	1.5 kV / 700 V RMS

Low cost audio isolation transformer LL1591

LL1591 is a low cost audio isolation transformer, pin compatible with e.g. LL1527 and LL1581XL. The purpose with LL1591 is to provide a low cost solution, when noise rejection requirements are small. The LL1591 does not have internal faraday shields, nor mu metal housing. **Turns ratio:** 1 + 1 : 1 + 1

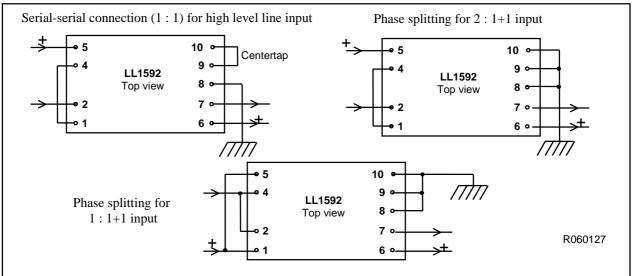
Pin layout (viewed from component side) and winding schematics:

Spacing between pinsS5.08 mm (0.2")	Spacing between rows of pin 27.94 mm (1.1")	15
Dimensions : (L x W x H above	PCB, in mm)	37 x 22 x 17
Weight:		39 g
Rec. PCB hole diameter:		1.5 mm
Static resistance of each prima	ry:	43Ω
Static resistance of each second	lary:	55Ω
Distortion (primaries connected	in series, source	+ 6 dBU 0.1% @ 50 Hz
impedance 800Ω):		
		+16 dBU < 1 % @ 50 Hz
Self resonance point :		> 120 kHz
Optimum load for best square-	wave response (sec. in	$3-4 \ k\Omega$
series):		
Frequency response (source 60 connection):	0Ω , load 10 k Ω serial	10 Hz 80 kHz +/- 1 dB
Loss across transformer (at mic termination):	dband, with above	0.4 dB
Isolation between windings/ be	tween windings and core:	3 kV / 1.5 kV

Serial-serial connection (1:1)Parallel-parallel connection (1:1)for line input (e.g. mic input) • 4 8 σ 8 • o 4 • 3 7 3 7 E٥ E٥ 6 2 ۰ 2 6 9 1 5 o + 5 + + Parallel-serial connection (1:2)Parallel-split connection (1:1+1)(In this connection, the transformer picks up external magnetic fields) (e.g. mic. input) -04 + 8 • 8 < Δ • 3 7 9 7 3 E٥ E٥ • 2 6 9 6 ۰ 2 5 9 5 م 1 + + R050916

Connection alternatives and suggested applications:

High Level Line Input Transformer LL1592


LL1592 is a high-level line input transformer with a mu metal lamination core. The transformer is designed for high end pro audio line input applications with or without phase splitting. The windings are arranged to give a high degree of symmetry if the transformer is used for phase splitting. The dual-coil structure also greatly improves immunity to external magnetic fields from e.g. power supplies and motors. Primary and secondary windings are separated by electrostatic shields.. The transformer is housed in a mu-metal can.

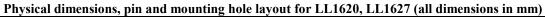
Turns ratio:

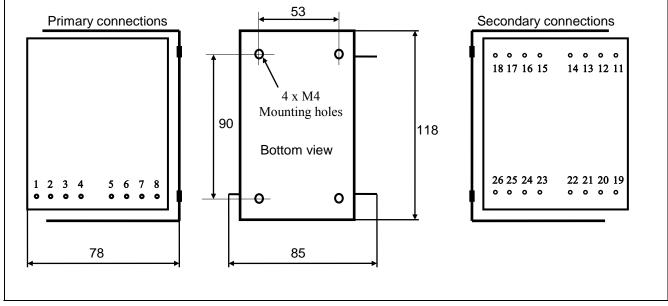
1 + 1 : 1 + 1

° 5		10 •	
• 4	LL1592	9 0	2 ~~~ 7
	Top view	8 •	5 • • • • • • 6
• 2		7 •	ξ ξ
۰1		6 •	4 • • • • 9

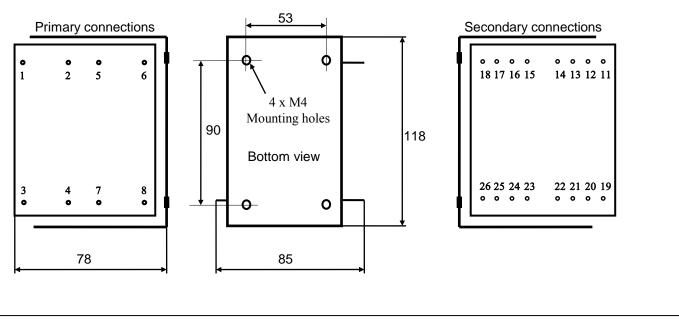
Dimensions	(L x W x H above PCB, in mm)	47 x 28 x 20
Spacing betwee	n pins	5.08 mm (0.2")
Spacing betwee	n rows of pins	35.56 mm (1.4")
Rec. PCB hole	liameter:	1.5 mm
Weight:		83 g
Static resistance	e of each primary:	270 Ω
Static resistance	e of each secondary:	270 Ω
Distortion	(primaries connected in series,	+ 23 dBU 0.1% @ 40 Hz
	source impedance 600Ω):	+ 29 dBU < 1 % @ 40 Hz
Self resonance	point:	> 120 kHz
Suggested term	ination for best square wave response,	7k + 400pF
serial-serial con	nection.	
Frequency resp	onse (serial connection , source 600 Ω ,	10 Hz 50 kHz +/- 1.0 dB
load 20	$k\Omega$, no terminating network	
Frequency resp	onse (serial connection, source 600 Ω ,	10 Hz 100 kHz +/- 1.0 dB
load 10	0 k Ω in parallel with 7k + 400pF):	
Phase splitting	balance (connection 2:1+1. Source $1k\Omega$,	>46 dB, 10Hz – 50kHz
load (20	$0k\Omega + 20k\Omega$) in parallel with $7k + 400pF$):,	
Phase response	(deviation from linear phase)	$10 \text{ Hz} - 20 \text{kHz}, < 2^{\circ}$
(source	600 ohm, load 10k (Audio Precision))	
Isolation betwe	en windings/ between windings and shield:	3 kV / 1.5 kV

Connection alternatives and suggested applications:

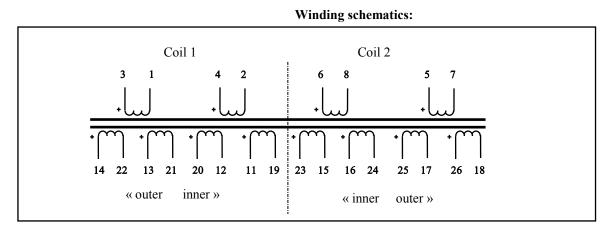

Tube Amplifier Output Transformers LL1620, LL1623, LL1627, LL9202


The LL1620, LL1623, LL1627 and LL9202 are output transformers for tube amplifiers. All transformers are based on the same core size, winding structure and secondaries, but differ in number of turns (and thus impedance level) of primaries.

The transformers are highly sectioned with harmonically sized sections, which results in a minimum leakage inductance. This, combined with a low capacitance coil winding technique results in a wide frequency range.


The transformers have a special audio C-core of our own production, which is gapped for desired DC current.

The transformers are of open frame type suitable for mounting inside an amplifier housing.



Physical dimensions, pin and mounting hole layout for LL1623, LL9202 (all dimensions in mm)

R150220 PL

Pin spacing module: Weight: 5.08 mm (0.2") 2.5 kg

The inner windings have a lower copper resistance due to smaller circumference

	LL	9202	LL	1620	LL	1623	LL	1627
Turns ratio:	4 x 26.5 : 8 x 1		4 x 19.2 : 8 x 1		4 x 13	.4 : 8 x 1	4 x 8.:	5 : 8 x 1
Static resistance of primary (all in series)	600 Ω (4 • 150 Ω)		308 Ω (4 • 77 Ω)		$164 \Omega (4 \cdot 41 \Omega)$		56Ω (4•14Ω)	
Static resistance of each secondary (average)	0.4 Ω		0.4 Ω		0.4 Ω		0.4 Ω	
Primary leakage inductance (all in series)	20 mH		11 mH		4.6 mH		1.9 mH	
Max. recommended primary DC current (heat dissip. 7W)	125 mA		150 mA		210 mA		350 mA	
Max. primary signal voltage r.m.s. at 30 Hz (all in series)	Push-Pull 1180V	Single End 525V	Push-Pull 860V	Single End 380V	Push-Pull 610V	Single End 270V	Push-Pull 380V	Single End 170V

Isolation between primary and secondary windings / between windings and core: 3 kV / 1.5 kV

Standard types:	LL9202 / PP LL1620 / PP LL1623 / PP	LL9202 / 50mA LL1620 / 40 mA LL1623 / 60 mA	LL9202 / 85mA LL1620 / 60 mA LL1623 / 90 mA	LL1620 / 80 mA LL1623 / 120 mA
	LL1627 / PP	LL1627 / 90 mA	LL1627 / 140 mA	LL1627 / 185 mA
Other sub-types ava	ailable on request			

Other sub-types available on request.

Frequency response example:

The frequency response is dependent on transformer type and connection alternative.

For the LL1623 / 90 mA, conne	ction alt. C, with	R _{SOURCE} :	= 650 Ω
			$R_{LOAD} = 8 \Omega$
you get:			
Frequency response	7 Hz - 25 kHz	+/- 0.5 dB	
Phase Shift	@ 20 Hz	2°	

r nase Smit	<i>W</i> 20 HZ	2
	@ 20 kHz	13.5°
Group delay $(\delta \phi / \delta \omega)$	@ 20 kHz	2.2 μs

Electrical characteristics

	Secondary connection for $4/8/16 \Omega$				Core Air	gap (Delta/2)	
	· · · · ·	See next page	<i>.</i>			1	1
	-/B/C	B/C/D	C/D/E	25 μ	125 µ	190 µ	250 μ
				(Push-Pull)	(Single Ended)	(Single Ended	l) (Single Ended)
	Primary Load Impedance						c. operating point)
	(transformer copper resistance included)]	Primary Induct	ance
LL1627	2.3 kΩ	1.2 kΩ	0.65 kΩ	Push-Pull	90 mA	140 mA	185 mA
				60 H	18 H	12 H	9 H
LL1623	5.6 kΩ	3.0 kΩ	1.6 kΩ	Push-Pull	60 mA	90 mA	120 mA
				150 H	46 H	30 H	23 H
LL1620	11.5 kΩ	6.0 kΩ	3.3 kΩ	Push-Pull	40 mA	60 mA	80 mA
				300 H	90 H	60 H	45 H
LL9202	23 kΩ	11 kΩ	6.5 kΩ	Push-Pull	50 mA / 225µ	85 mA / 400µ	ı
				570 H	100 H	57 H	
	Outpu	it Power an	d Loss				
	62W	125W	250W	Max. Po	ower, Push-Pull at	30 Hz	
All types	13W	25W	50W	Max. Power, Single Ended at 30 Hz			
	0.2 dB	0.5 dB	0.8 dB	Los	s across transform	er	

Primary Load Impedance, Primary DC Current Core Air-gap and Maximum Output Power

Our recommendations on how to choose your tube output transformer:

Push-pull output stages:

All our push-pull output transformers have a 25 microns core air gap to allow for a small DC unbalance of your output circuits.

Step 1 From your secondary load impedance (4, 8 or 16 ohms), we suggest a secondary connection alternative with 0.5 dB loss. This will give you a maximum power limit of 125W at 30 Hz, and a LF -1 dB point at 6.4 Hz for pentodes and lower still for triodes.

If you require more headroom at low frequencies, the 0.8 dB loss alternative expands the LF limit one octave.

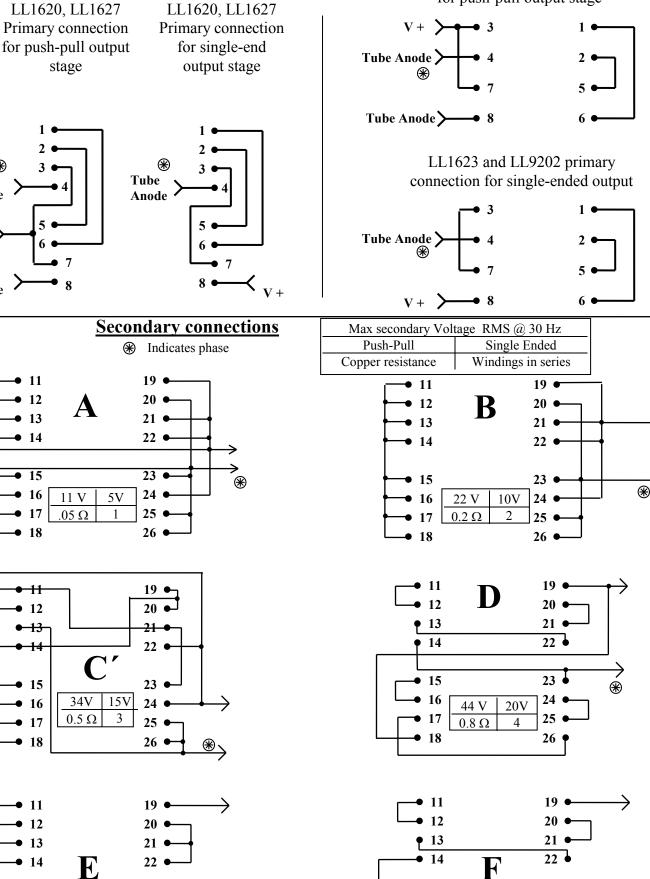
Step 2 Your tube choice gives you a desired primary load impedance. Select the transformer type having a primary load impedance which best matches the desired impedance.

The LL1623 (5.6 k Ω plate-to-plate impedance) or the LL1620 (6.0 k Ω plate-to-plate impedance) suits many tubes like the 300B triode or the EL34 pentode. The 6C33 (low voltage, high current) requires a transformer LL1627 while high anode voltage tubes require the high impedance of the LL1620.

Footnote: In class A push-pull, each **tube** will see a load impedance = 1/2 transformer primary load impedance. In class B push-pull, each **tube** will see 1/4.

Single-end output stages:

The core of Single End output transformers have an airgap. The purpose of the airgap is to accept the DC current of the output tube without saturating the core, leaving enough headroom for the sound signal. As a result of the airgap, the primary inductance is lower for SE output transformers compared to P-P dittos. In addition, the inductance tends to vary with DC current. For our high quality C- cores with carefully ground surfaces, the variation is within +7% of rated value.


- Step 1 We recommend that, given your secondary load impedance (4, 8 or 16 ohms), you select a secondary connection alternative with 0.5 dB loss. This will give you a power limit of 25 W at 30 Hz. If you find that you require more bass headroom, select a secondary connection alternative with 0.8 dB loss.
- Step 2 From the tube load line you determine a primary load impedance. This results in a choice of transformer main type.
- Step 3 From the tube data sheet you also select your desired DC current. From the table above you select the transformer subtype (DC current) which best fits your needs. For many tubes such as the 300B and the EL34, the transformer LL1623 / 90 mA is the ideal choice.
- Step 4 We define **Power Low Frequency Limit, F**_{PL}, as the frequency where $\omega L_P = R_{LOAD}$. (The reactive impedance of the transformer equals the primary load impedance). At F_{PL}, the output power is reduced to 50%. For the LL1623 / 90 mA in a 0.5 dB loss connection, F_{PL} = 16 Hz (R_{PRIMARY} = 3.0 kohms and L_P = 30H).
- Step 5 We define **Response Low Frequency Limit**, \mathbf{F}_{RL} as the frequency where a (small) output signal is reduced with -1 dB due to finite primary inductance. $\mathbf{F}_{RL} = \omega / \pi$, if you solve ω in

 $\omega L_P = (R_{LOAD} \text{ in parallell with } R_{ANODE}).$ For the LL1623 / 90 mA and a 300B triode, $F_{RL} = 7$ Hz. ($R_{ANODE} = 650$ ohms, $R_{PRIMARY} = 3.0$ kohms and $L_P = 30$ H),

Primary Connections

ℜ Indicates phase

LL1623 and LL9202 primary connection for push-pull output stage

E 14 • 15 23 • ⊛ 16 24 • 68 V 30V 17 25 • 2Ω 6 • 18 **26** • LL1620, LL1623, LL1627, LL9202

1 2

3

11

12

13

• 14

• 15

16

17

18

-11

12

• 13

14

15

16

17

18

11

12

13

⊛

Tube

Tube

Anode

Anode

• 15

16

17

• 18

P

88 V

3.2 Ω

23

25 •

26

24

40V

8

 $\overrightarrow{}$

Amorphous core output transformers

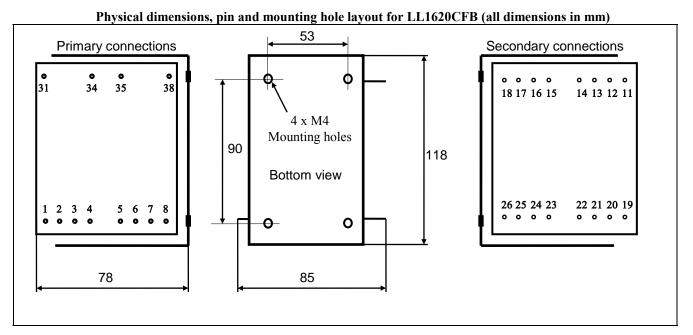
LL1620AM, LL1623AM, LL1627AM, LL1679AM, LL9202AM

Some of our tube output transformers are now available with amorphous core. Listening tests, in particular for the PP versions where the core airgap is not as dominating as in SE applications, have reported a more transparent, wider bandwidth character than our silicon iron counterparts.

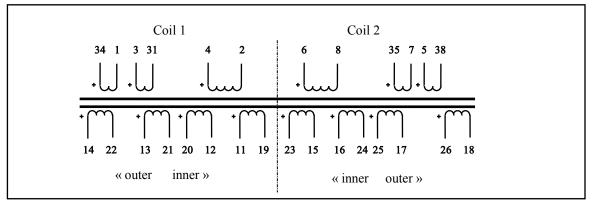
For connection alternatives and general application information, please refer to data sheets for our regular (silicon-iron) output transformers.

The obvious measurable difference between our silicon-iron cores and amorphous cores is that the saturation flux for the amorphous core is approximately 33% less than for the silicon-iron counterpart. This is caused partly by a lower saturating flux level, partly by a smaller fill-factor due to the thickness of the amorphous sheets.

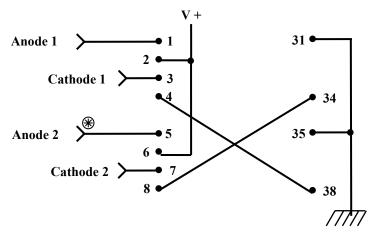
As a result, power bandwidth is reduced by about 50%. (This means that if the max output power for a standard LL1620/40mA is 25W at 30 Hz, corresponding max. power for LL1620AM/40mA is 13W.)


This is probably not a problem in most Push-Pull applications, but should possibly be considered in Single End amplifiers.

R041022

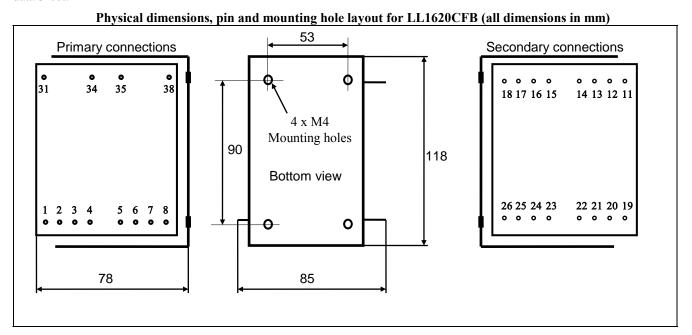


Tube Amplifier Output TransformerLL1620CFB (Cathode FeedBack)

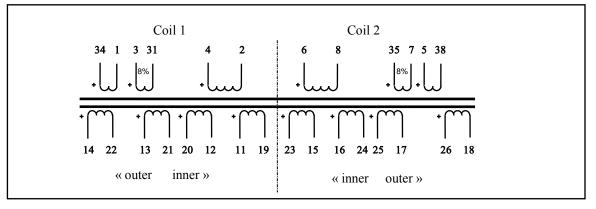

The LL1620CFB is a version of the LL1620 where one primary winding on each coil has been split in half to support Push-Pull Cathode Feedback applications with 25% feedback. For all data not presented in this sheet, please refer to the regular LL1620 data sheet.

Winding schematics:

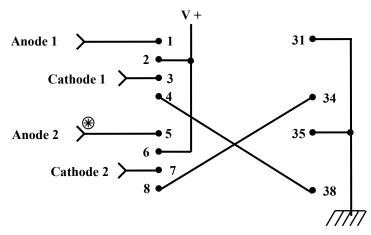
LL1620CFB Primary connection for push-pull output stage with 25% cathode feedback



R150220 PL



Tube Amplifier Output Transformer <u>LL1620CFB8% (for Cathode FeedBack)</u>


The LL1620CFB is a version of the LL1620 where one primary winding on each coil has been split to support Push-Pull Cathode Feedback applications with 8% feedback. For all data not presented in this sheet, please refer to the regular LL1620 data sheet.

Winding schematics:

LL1620CFB Primary connection for push-pull output stage with 8% cathode feedback

R150220 PL

Pin spacing module: Weight:

5.08 mm (0.2") 2.5 kg

Coil	1	Coil	2
3 1 + Luu	4 2 ↓	6 8 ↓↓↓	5 7 ↓ ↓ ↓
$\begin{array}{c} \bullet \\ 14 22 13 21 \end{array}$			+ () + ()
« outer ir	iner »	« inner	outer »

Winding schematics:

The inner windings have lower copper resistance due to smaller circumference

	LL1620		LL1623		LL1627	
Turns ratio:	4 x 19.2 : 8 x 1		4 x 13.4 : 8 x 1		4 x 8.5 : 8 x 1	
Static resistance of primary (all in series)	308 Ω (4 • 77 Ω)		164 Ω (4 • 41 Ω)		56Ω (4•14Ω)	
Static resistance of each secondary (average)	0.4 Ω		0.4 Ω		0.4 Ω	
Primary leakage inductance (all in series)	13 mH		4.6 mH		1.9 mH	
Max. primary signal voltage r.m.s. at 30 Hz (all in series)	Push-Pull 860V	Single End 380V	Push-Pull 610V	Single End 270V	Push-Pull 380V	Single End 170V

Isolation between primary and secondary windings / between windings and core: 3 kV / 1.5 kV

Standard types:	LL1620 P-P	LL1620 / 40 mA	LL1620 / 60 mA	LL1620 / 80 mA
	LL1623 P-P	LL1623 / 60 mA	LL1623 / 90 mA	LL1623 / 120 mA
	LL1627 P-P	LL1627 / 90 mA	LL1627 / 140 mA	LL1627 / 185 mA

Frequency response: The frequency response is dependent on transformer type and connection alternative.

E.g. for the LL1623 / 90 mA, c	connection alt. C, with	$R_{SOURCE} = 650 \Omega$
		$R_{LOAD} = 8 \Omega$
you get:		
Frequency response	7 Hz - 25 kHz +/- 0	.5 dB
Phase Shift	@ 20 Hz 2°	
	@ 20 kHz 13.	5°
Group delay $(\delta \phi / \delta \omega)$	@ 20 kHz 2.2	μs

LL1620, LL1623, LL1627

Electrical characteristics

	Sec. con	nnection for	• 4/8/16 Ω		Core Air	gap (Delta/2)	
	(See next page)						
	-/B/C	B/C/D	C/D/E	25 μ	125 μ	190 µ	250 μ
				(Push-Pull)	(Single End)	(Single End)	(Single End)
	Prima	ry Load Im	pedance		DC current fo	or 0.9 Tesla (rec. oj	perating point)
]	Primary Inductance	e
LL1627	2.3 kΩ	1.2 kΩ	0.65 kΩ	Push-Pull	90 mA	140 mA	185 mA
				60 H	18 H	12 H	9 H
LL1623	5.6 kΩ	3.0 kΩ	1.6 kΩ	Push-Pull	60 mA	90 mA	120 mA
				150 H	46 H	30 H	23 H
LL1620	11.5 kΩ	6.0 kΩ	3.3 kΩ	Push-Pull	40 mA	60 mA	80 mA
				300 H	90 H	60 H	45 H
	P	ower and L	OSS				
	62W	125W	250W	Max. Pov	ver, P-P at 30 Hz		
All types	13W	25W	50W	Max. Power, S.E. at 30 Hz			
	0.2 dB	0.5 dB	0.8 dB	Loss acr	oss transformer		

Primary Load Impedance, Primary DC Current Core Air-gap and Maximum Output Power

Our recommendations on how to choose your tube output transformer

Push-pull output stages:

All our push-pull output transformers have a 25 microns core air gap to allow for a small DC unbalance of your output circuits.

Step 1 From your secondary load impedance (4, 8 or 16 ohms), we suggest a secondary connection alternative with 0.5 dB loss. This will give you a maximum power limit of 125W at 30 Hz, and a LF -1 dB point at 6.4 Hz for pentodes and lower still for triodes.

If you require more headroom at low frequencies, the 0.8 dB loss alternative expands the LF limit one octave.

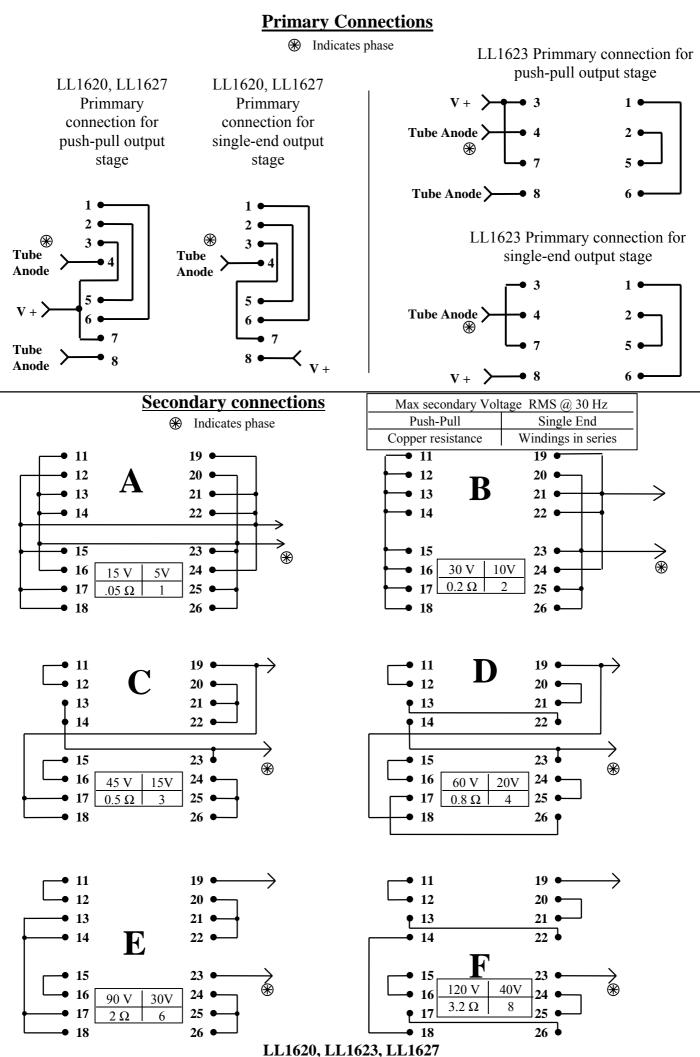
Step 2 Your tube choice gives you a desired primary load impedance. Select the transformer type having a primary load impedance which best matches the desired impedance.

The LL1623 (5.6 k Ω plate-to-plate impedance) or the LL1620 (6.0 k Ω plate-to-plate impedance) suites many tubes like the 300B triode or the EL34 pentode. The 6C33 (low voltage, high current) requires a transformer LL1627 while high anode voltage tubes require the high impedance of the LL1620.

Footnote: In class A push-pull, each **tube** will see a load impedance = 1/2 transformer primary load impedance. In class B push-pull, each **tube** will see 1/4.

Single-end output stages:

The core of Single End output transformers have an airgap. The purpose of the airgap is to accept the DC current of the output tube without saturating the core, leaving enough headroom for the sound signal. As a result of the airgap, the primary inductance is lower for SE output transformers compared to P-P dittos. In addition, the inductance tends to vary with DC current. For our high quality C- cores with carefully ground surfaces, the variation is within +7% of rated value.


Step 1 We recommend that, given your secondary load impedance (4, 8 or 16 ohms), you select a secondary connection alternative with 0.5 dB loss. This will give you a power limit of 25 W at 30 Hz. If you find that you require more bass headroom, select a secondary connection alternative with 0.8 dB loss.

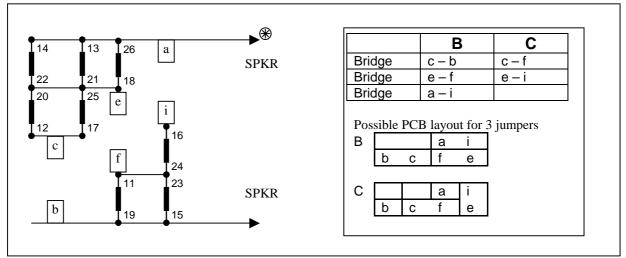
Step 2 From the tube load line you determine a primary load impedance. This results in a choice of transformer main type.

- Step 3 From the tube data sheet you also select your desired DC current. From the table above you select the transformer subtype (DC current) which best fits your needs. For many tubes such as the 300B and the EL34, the transformer LL1623 / 90 mA is the ideal choice.
- Step 4 We define **Power Low Frequency Limit**, \mathbf{F}_{PL} , as the frequency where $\omega L_p = \mathbf{R}_{LOAD}$. (The reactive impedance of the transformer equals the primary load impedance). At \mathbf{F}_{PL} , the output power is reduced to 50%. For the LL 1623 / 90 mA in a 0.5 dB loss connection $\mathbf{E}_{P} = 16$ Hz ($\mathbf{R}_{PL} = -3.0$ kohms and $\mathbf{L}_{P} = 3.0$ kohms.

 $LL 1623 / 90 \text{ mA in a } 0.5 \text{ dB loss connection, } F_{PL} = 16 \text{ Hz} (R_{PRIMARY} = 3.0 \text{ kohms and } L_{P} = 30\text{H}).$ Step 5
We define **Response Low Frequency Limit, F**_{RL} as the frequency where a (small) output signal is reduced with -1 dB due to finite primary inductance. F_{RL} = ω / π , if you solve ω in $\omega L_{P} = (R_{LOAD} \text{ in parallell with } R_{ANODE}).$ For the LL 1623 / 90 mA and a 300B triode, F_{RL} = 7 Hz. (R_{ANODE} = 650 \text{ ohms, } R_{PRIMARY} = 3.0 \text{ kohms and } L_{P} = 30\text{H}),

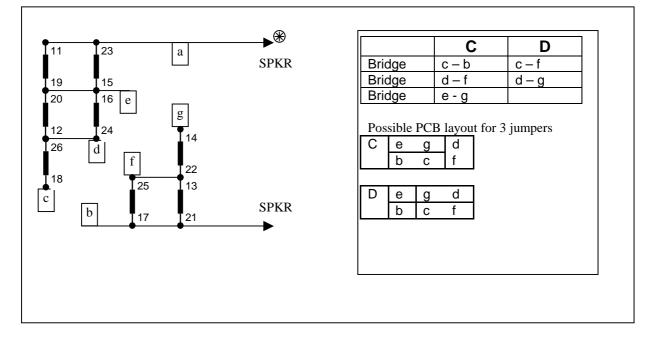
LL1620, LL1623, LL1627

- 4 -



Tibeliusgatan 7 SE-761 50 NORRTÄLJE SWEDEN

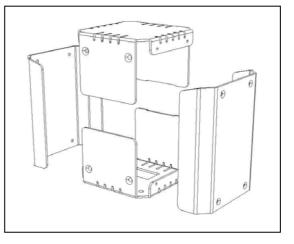
LL1620, LL1623, LL1627 Suggested connection diagram for simplified switching between different output impedance.


Switch between secondary connections B and C

(numbers refer to LL1620, LL1623, LL1627 secondary taps)

Switch between secondary connections C and D

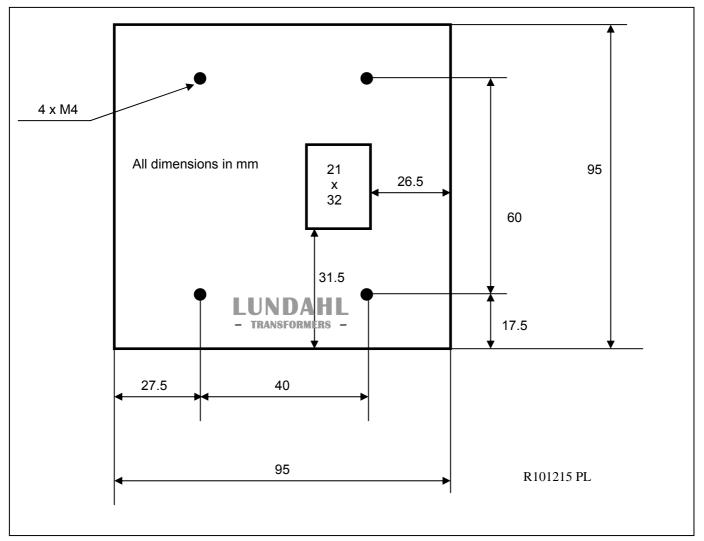
(numbers refer to LL1620, LL1623, LL1627 secondary taps)



	International	Domestic
Phone	+46 - 176 13930	0176-13930
Fax	+46 - 176 13935	0176-13935

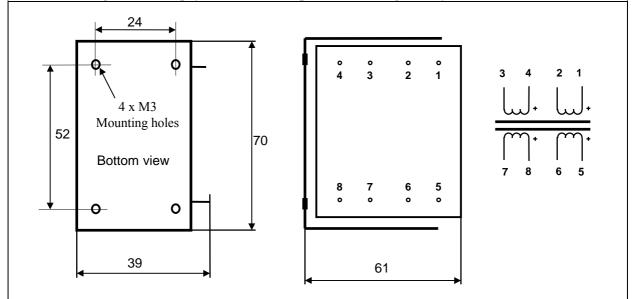
LL1620_HOUSING

Housing for LL1620-size tube amp transformers. (LL1620, LL1623, LL1627, LL1648, LL1649, LL1650, LL1651, LL1679, LL2410, LL2414, LL2418, LL2419, LL9202)

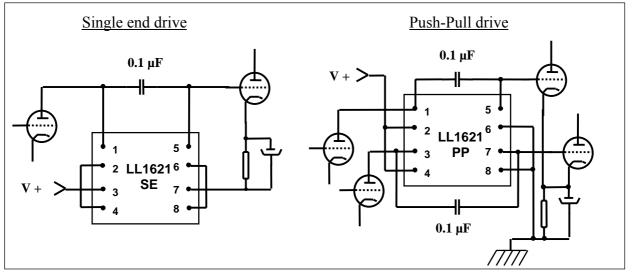


Dimensions	126 mm (4.95") tall,	Material	2 mm construction steel
	95 x 95 mm (3.76" x 3.76") footprint		
Finish	Medium charcoal semi-gloss powder coat	Logo	Black silk screen print

LL1620_housing footprint.


NOT TO SCALE. For mounting, drill 4 x 4.5 mm holes for M4 screws, and one 20mm hole for cabels.

Noninverting Drive Transformer for Tube Amplifier Output Stage LL1621


LL1621 is a noninverting high inductance drive transformer for tube amplifier output stages. The transformer has a special audio C-core of our own production, and the coil is made using a low capacitance coil winding technique. LL1621 is available in Push-pull and Single-end versions.

Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

	<u>LL1621 / P-P</u>	<u>LL1621 / 6mA</u>	<u>LL1621 / 20mA</u>
Weight:	0.5 kg	0.5 kg	0.5 kg
Static resistance of each primary (avarage)	445 Ω	445 Ω	445 Ω
Static resistance of each secondary (avarage)	455 Ω	455 Ω	455 Ω
Recommended primary DC current, primaries in series		6 mA	20 mA
Maximum DC current before saturation, primaries in		10 mA	35 mA
series			
Primary inductance (primaries in series)	> 300 H	130 H	30 H
Freq. response (EXAMPLE!) LL1621 / 6mA	source 3.9 k, no load	+/- 0.5 dB 10 H	z 100 kHz

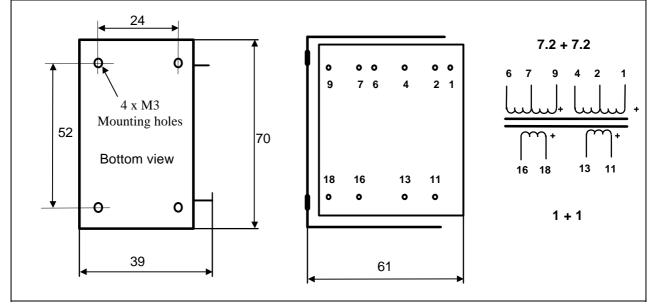
Isolation between primary and secondary windings / between windings and core: 4 kV / 2 kV

Output stage drive examples :

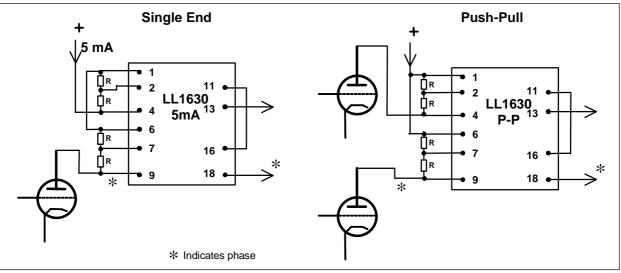
R971023

Turns ratio:

^{1+1:1+1}


Line Output Transformer for Tube Amplifiers LL1630

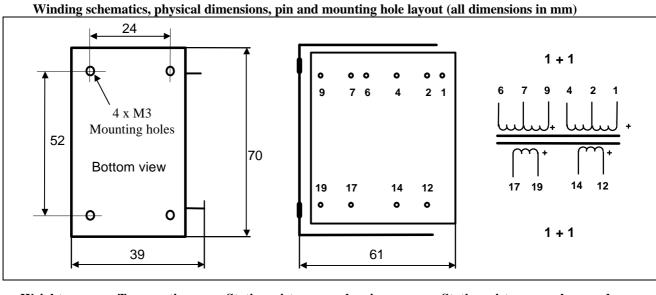
LL1630 is a line output transformer for tube amplifiers.


The transformer is highly sectioned, and wound with a special low capacitance winding technique. This results in very good high frequency performance. The transformer has a special audio C-core of our own production.

7.2 + 7.2 : 1+1

Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

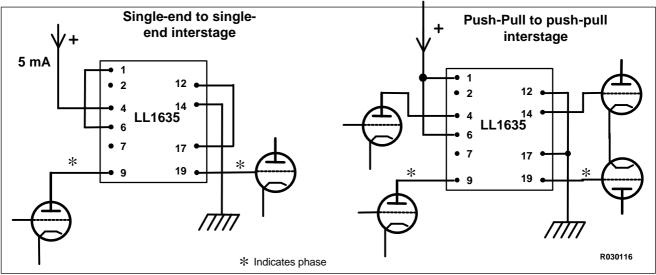
	LL1630 / 5mA	LL1630 P-P
Static resistance of each primary (average)	$480 \ \Omega$	$480 \ \Omega$
Static resistance of each secondary (average)	14 Ω	14 Ω
Primary DC current, primaries in series (For $B_0 = 0.9 T$)	5 mA	
Maximum DC current before core saturation, primaries in series	9 mA	
Max standing DC current through any primary section	40mA	40mA
Primary inductance (primaries in series)	130 H	> 300H
Frequency response @ 0 dBU output level	10 Hz - 40 KHz	5 Hz - 40 KHz
(Source 2 k Ω , load 600 Ω . Primaries terminated as suggested below)	+/- 0.5 dB	+/- 0.5 dB
Max. output level at 30 Hz (Secondaries in series)	18 V rms	45 V rms
Weight	0.5 kg	0.5 kg
Isolation between primary and secondary windings / between	4 kV / 2 kV	4 kV / 2 kV
windings and core		


Application examples. Suggested primary terminating resistors 10 k each.

Turns ratio:

Tube Amplifier Interstage Transformer LL1635

LL1635 is an interstage transformer for tube (valve) amplifiers available in Push-pull or Single-end versions. The transformer is highly sectioned, and wound with a special low capacitance winding technique which results in very good frequency response. The transformer has a special high flux, low distortion audio C-core of our own production. **NOTE:** LL1635 is not suitable for SE to PP interstage. For this application we suggest transformer LL1660 or LL1660S


WeightTurns ratioStatic resistance, each primary0.5 Kg1+1:1+1 500Ω

Static resistance, each secondary $500 \ \Omega$

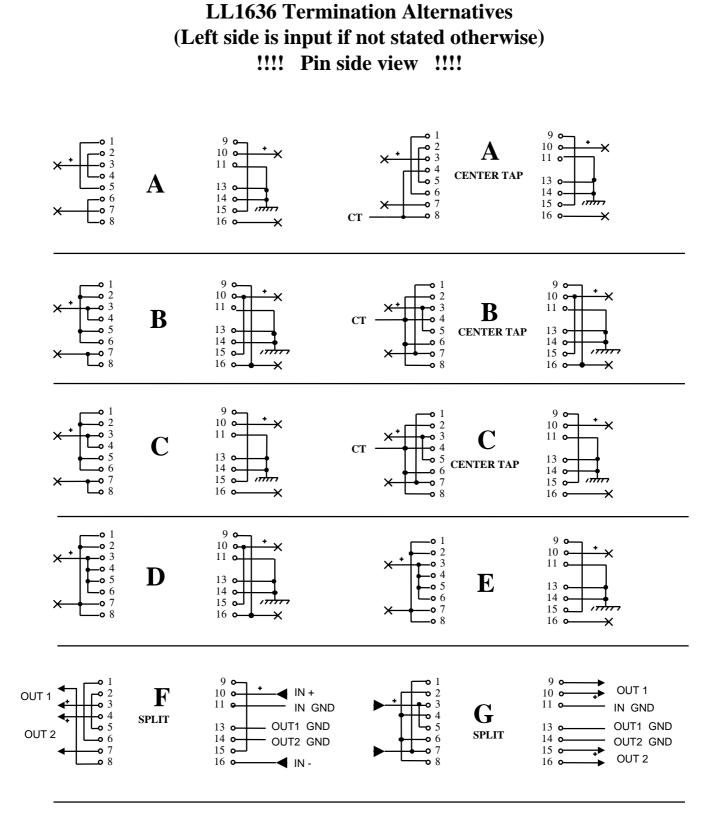
Primary DC current, primaries in series (for $B_0 = 0.9T$)
Maximum DC current before saturation, primaries in series
Primary inductance (primaries in series)
Frequency response, primaries in series
(Source 4 k Ω for PP and 5mA, 2 k Ω for 20 mA. Load 68 pF)
Group delay @ 20 kHz (Source and load as above)
Max. output voltage @ 30 Hz

Recommended max DC current through any primary section Isolation between primary and secondary windings / between windings and core

LL1635 P-P	LL1635 /5mA	LL1635/20mA
	5 mA	20 mA
	9 mA	35 mA
> 300 H	130 H	30 H
5 Hz - 60 kHz	10 Hz -60 kHz	20 Hz -75 kHz
+/- 1 dB	+/- 1 dB	+/- 1 dB
0.5µs	0.5µs	0.5µs
2x220 V peak	2x90 V peak	2x90 V peak
(tot. 310Vrms)	(tot. 125Vrms)	(tot. 125Vrms)
40mA	40mA	40mA
4 kV / 2 kV	4 kV / 2 kV	4 kV / 2 kV

Application examples. Interstage transformer.

Microphone Input Transformer LL1636

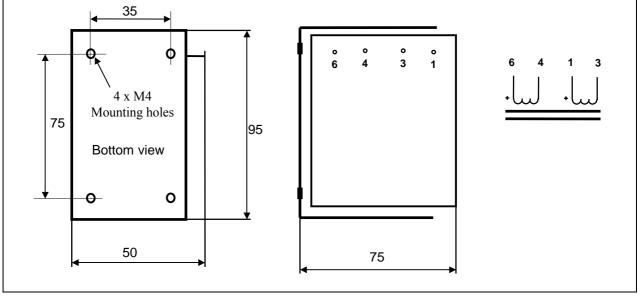

LL1636 is an audio input transformer for applications where a high turn's ratio is desired. The transformer is built up from two coils, each with a secondary winding surrounded by shields and two primary windings. This structure results in an excellent frequency response. All winding ends are available on the pins. Thus, the transformer can be configured for a number of different turn's ratios.

The LL1636 is made with amorphous core material. As this type of core does not store energy (unlike conventional mu-metal cores) the low frequency resonance with external series capacitors is practically eliminated.

Turns ratio: Dims: (Length x Width x Heig Pin Layout (viewed from <u>pins</u>	ght above PCB (mm)) side) and Windings Schematics:	1 + 1 + 1 + 1 : 10 + 10 30 x 22.5 x 14.5
o 2 10 o 3 11 o 4 0 o 5 13 o 6 14 o 7 15	$ \begin{array}{c} 1 \\ - \\ 2 \\ - \\ 2 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	+ 9 10 13 14 16 15
		Can + core 14
Spacing between pins:		2.54 mm (0.1")
Spacing between rows of pins:	:	22.86 mm (0.9")
Weight: Rec. PCB hole diameter:	1.5 m	27 g
Static resistance of <u>each</u> prima		10 Ω
Static resistance of <u>each</u> secon		415 Ω
Self resonance point :		> 250 kHz
Frequency response		
(@ -10 dBU, all in seri	ies. Source 50 Ω , load 100 k Ω):	10 Hz 25 kHz +/- 1 dB 10 Hz 90 kHz +/- 1.5 dB
Distortion (primaries connected in series, source impedance 50 Ω): < 0.5% (a) -2 dBU, 50 Hz		
Primary no load impedance @	0 dBU, 50 Hz, all in series: $8 \text{ k}\Omega \text{ t}$	ypically
Core / Can: Isolation between windings / b	petween windings and core:	Amorphous Strip Core / Mu-metal can 3 kV / 1.5 kV

Turns ratio and possible use at different termination alternatives. Termination alternatives are shown on the following page.

Termination Alternative	Turns ratio	Copper Resistance prim/sec	Possible Use
А	1:5	40Ω / 790 Ω	400Ω / $10~k\Omega$
В	1:5	10Ω / $200~\Omega$	Not recommended
С	1:10	10Ω / 790 Ω	100Ω / $10k\Omega$
D	1:10	2.5Ω / 200 Ω	Not recommended
E	1:20	2.5Ω / 790 Ω	25Ω / $10k\Omega$

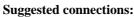

Choke LL1638

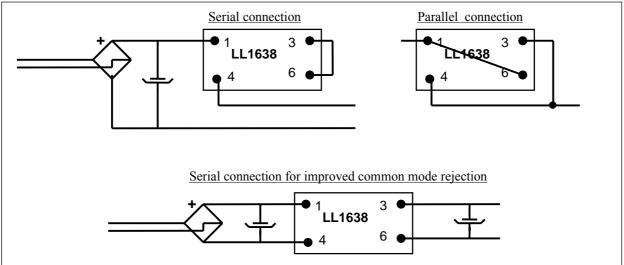
The LL1638 is a 2 coils choke for tube amplifier anode supply.

The choke is available with different core air-gap, which results in different inductance and DC current capability.

The coil is wound using our standard high internal isolation technique with isolation foil between each copper layer. The core is an audio C-core of our own production.

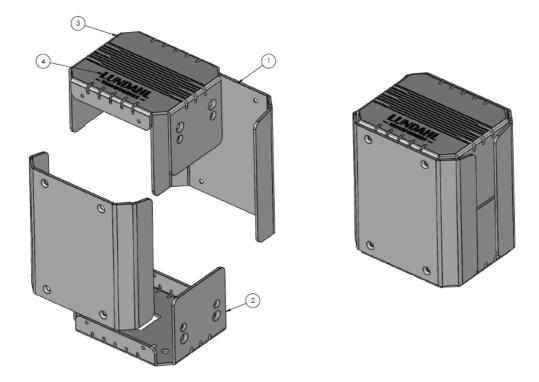
Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)


Weight:

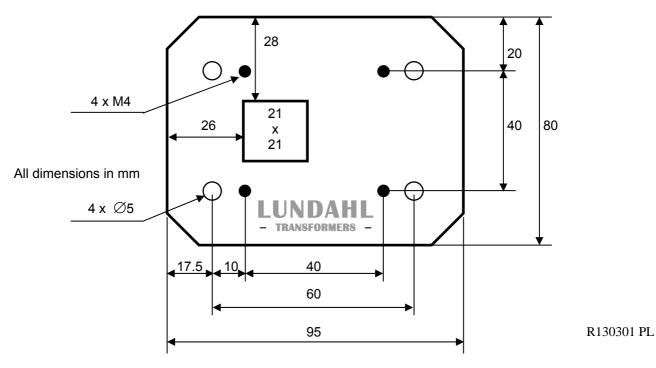

Static resistance of each winding:

Isolation between windings / between windings and core:

	Coils in series			Coils in parallel			
	In-	Recommended	Saturating	In-	Recommended	Saturating	
Туре	ductance	DC current	current	ductance	DC current	current	
LL1638 / 4 H	4 H	400 mA	575 mA	1 H	800 mA	1150 mA	
LL1638 / 8 H	8 H	200 mA	290 mA	2 H	400 mA	580 mA	
LL1638 / 10 H	10 H	150 mA	215 mA	2.5 H	300 mA	430 mA	
Max. ripple voltage		300V rms /		150V rms /			
at rec. DC current		100 Hz		100 Hz			

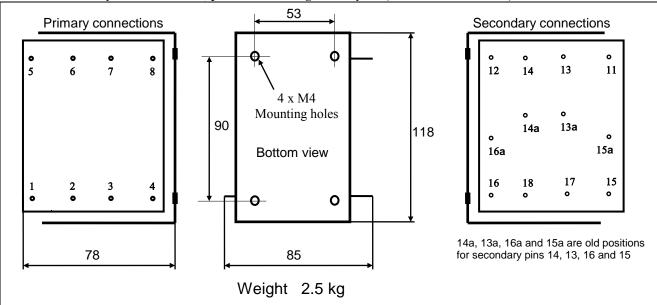


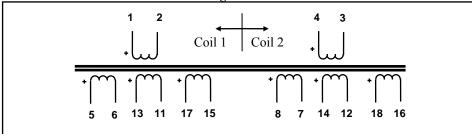
LL1638_HOUSING


Housing for LL1638 and LL1660 size chokes and transformers.

Dimensions	110 mm (4.33") tall,	Material	2 mm construction steel
	95 x 80 mm (3.76" x 3.15") footprint		
Finish	Medium charcoal semi-gloss powder coat	Logo	Black silk screen print

LL1638_housing footprint.


NOT TO SCALE. For mounting, drill 4 x 4.5 mm holes for M4 screws, and one 20mm hole for cables.


Mains Transformers for Tube Amplifiers LL1648, LL1649, LL1650, LL1651

C-core mains transformers. The core is assembled with a small air-gap to compensate for any mains DC-unbalance. Estimated power rating 250 VA which can be increased with good cooling. Magnetic stray is extremely small if secondaries of the two coils are loaded identically.

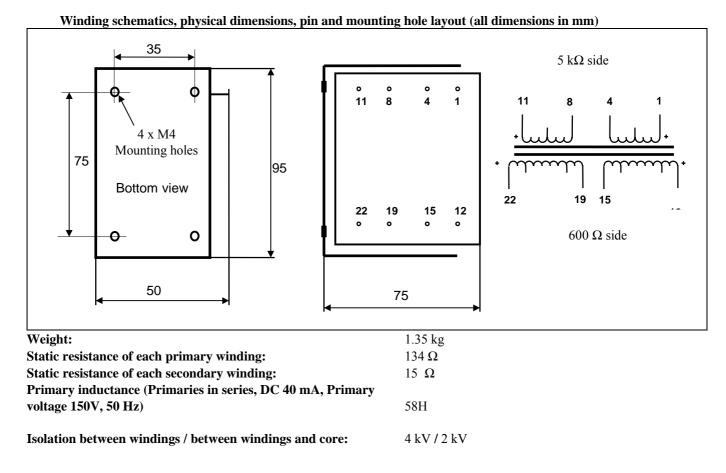
Physical dimensions, pin and mounting hole layout (all dimensions in mm)

Connection alternatives. Primary in series for 230V (left) and in parallel for 115V (right).

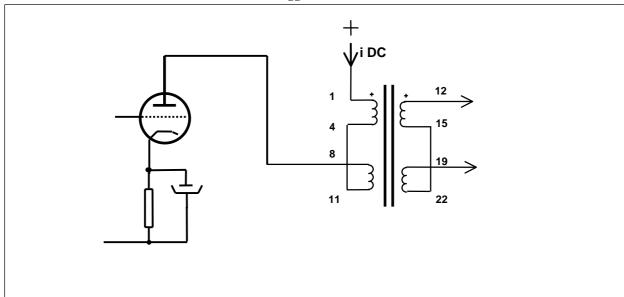
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
---	---

Copper resistance, no load output voltages and max recommended transformer current (rms) with primary connected to 230 V serial / 115V parallel and Sec 1 connected as above

Туре	Primary res.	Sec 1	Sec 2	Sec 3	Sec 4	Sec 5
	Serial/parallel					
LL1648	$7.5~\Omega$ / $1.9~\Omega$	$20~\Omega$ / $350~V$	0.1 Ω / 5.9 V	0.1 Ω / 5.9 V	$0.1~\Omega/6.6~V$	$0.1\;\Omega/6.6\;V$
		0.63A	3.1A	3.1A	3.1A	3.1A
LL1649	$7.5 \Omega / 1.9 \Omega$	8.4 Ω / 230 V	$0.1~\Omega/6.6V$	$0.1~\Omega/6.6V$	$0.1~\Omega$ / $6.6~V$	$0.1 \ \Omega / 6.6 \ V$
		1.0A	3.1A	3.1A	3.1A	3.1A
LL1650	$7.5 \Omega / 1.9 \Omega$	20 Ω / 350 V	$0.1~\Omega/6.6~V$	$0.1~\Omega/6.6V$	$0.1~\Omega$ / $6.6~V$	$0.1 \ \Omega / 6.6 \ V$
		0.63A	3.1A	3.1A	3.1A	3.1A
LL1651	$7.5~\Omega$ / $1.9~\Omega$	42 Ω / 500V	$0.1~\Omega/6.6~V$	$0.1 \ \Omega / 6.6 V$	$0.1~\Omega/6.6~V$	$0.1\;\Omega/6.6\;V$
		0.43A	3.1A	3.1A	3.1A	3.1A


Please note! Output current from rectifier: 63% of above with condensor input rectifier, 95% of above with choke input rectifier.

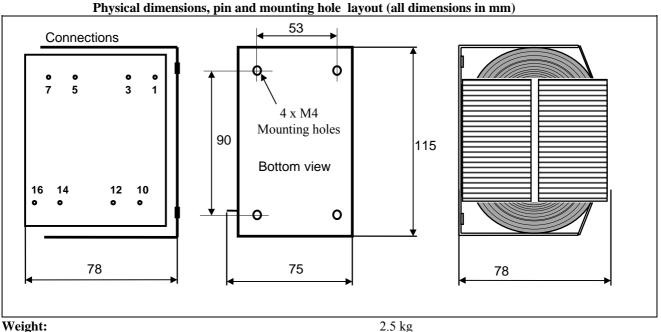
AB LARS LUNDAHL


Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN Phone:Int +46-176 139 30 Nat 0176-139 30 Fax: Int +46-176 139 35 Nat 0176-139 35

Line Output Transformer LL1654

The LL1654 is a 5 section line output transformer, 5 k Ω : 600 Ω , for tube amplifiers. The C-core is an audio core of our own production.

Suggested use:


AB LARS LUNDAHL

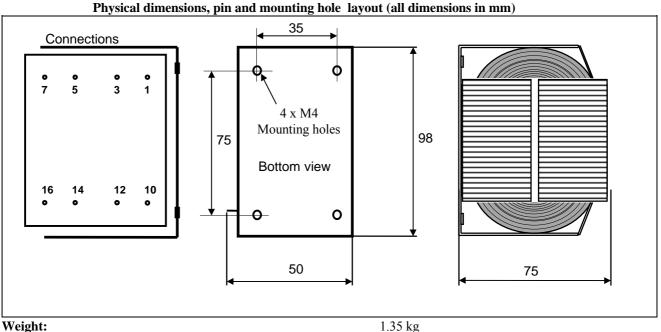
Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN Phone: Int. +46-176 139 30 Nat. 0176-139 30 Int. +46-176 139 35 Nat. 0176-139 35

Fax:

Mains Isolation Transformer LL1655

LL1650 is a C-core mains transformers for isolation and DC current elimination. The core is assembled with a carefully selected, very small air-gap to compensate for any mains DC-unbalance. Estimated power rating 300 VA which can be increased with good cooling.

Copper resistance, windings 1 - 3 and 7 - 5 respectively Copper resistance, windings 10 - 12 and 14 - 16 respectively Isolation between windings / between windings and core


AB LARS LUNDAHL

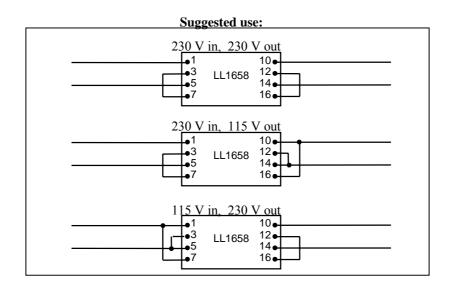
Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN Phone: Int. +46-176 139 30 Nat. 0176-139 30 Int. +46-176 139 35 Nat. 0176-139 35

Fax:

Mains Isolation Transformer LL1658

LL1658 is a C-core mains transformers for isolation and DC current elimination. The core is assembled with a carefully selected, very small air-gap to compensate for any mains DC-unbalance. Estimated power rating 100 VA which can be increased with good cooling.

Copper resistance, windings 1 - 3 and 7 - 5 respectively Copper resistance, windings 10 - 12 and 14 - 16 respectively Isolation between windings / between windings and core


1.55 Kg
11.3 Ω
9.9 Ω
4 kV / 4 kV

 Winding schematics:

 1
 3
 7
 5

 +
 Coil 1
 Coil 2
 +

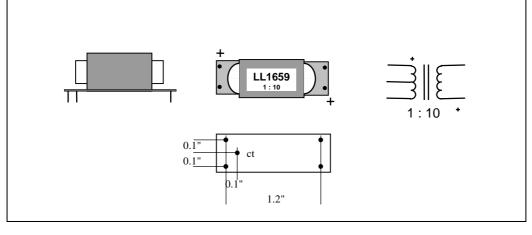
 +
 Coil 1
 Coil 1
 1

Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN

Inline Microphone Transformer LL1659

Turns ratio: Dims:	10 : 1
Length Width	35mm 15 mm (max)
Height above PCB	12 mm (max)
Distance between pins	5.08 x 30.48 mm (0.2" x 1.2")
Side and top views and winding schematics:	
+ (LL1659))• 1:10	= 1
Static resistance of primary:	810 Ω
Static resistance of secondary:	14 Ω
Core:	Amorphous strip core $1.2 \text{ V} / 12 \text{ V}$ rm s $= 50 \text{ Hz}$
Max signal level:	approx. 1.2 V / 12 V r.m.s. @ 50 Hz
Isolation between windings / between windings and core:	2 kV/1 kV

R980317



Inline Microphone Transformer LL1659CT

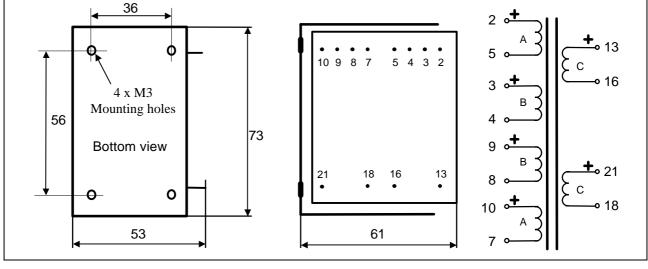
Inline transformer LL1659 with center tap

Turns ratio: Dims:	10:1
Length	35mm
Width	15 mm (max)
Height above PCB	12 mm (max)

Side and top views and winding schematics:

Static resistance of primary:	810 Ω
Static resistance of secondary:	14 Ω
Core:	Amorphous strip core
Max signal level:	approx. 1.2 V / 12 V r.m.s. @ 50 Hz
Isolation between windings / between windings and core:	2 kV/1 kV

R991123


Tube Amplifier Interstage Transformer / Line Output Transformer LL1660

LL1660 is an interstage / line output transformer for tube amplifiers. The transformer is available with different core air gap for PP or SE drives.

The transformer is wound with a special low capacitance winding technique to achieve best high frequency performance. The transformer has a special high flux, low distortion audio C-core of our own production. The LL1660PP is assembled with a small core air gap to allow for some DC current unbalance.

For the S.E. versions of the LL1660, the core air gap is chosen such that the denoted DC current (18mA for a LL1660/18mA) generates a no signal core flux density of 0.9 Tesla when used with all primaries in series. This leaves a flux density swing of 0.7 T for the signal.

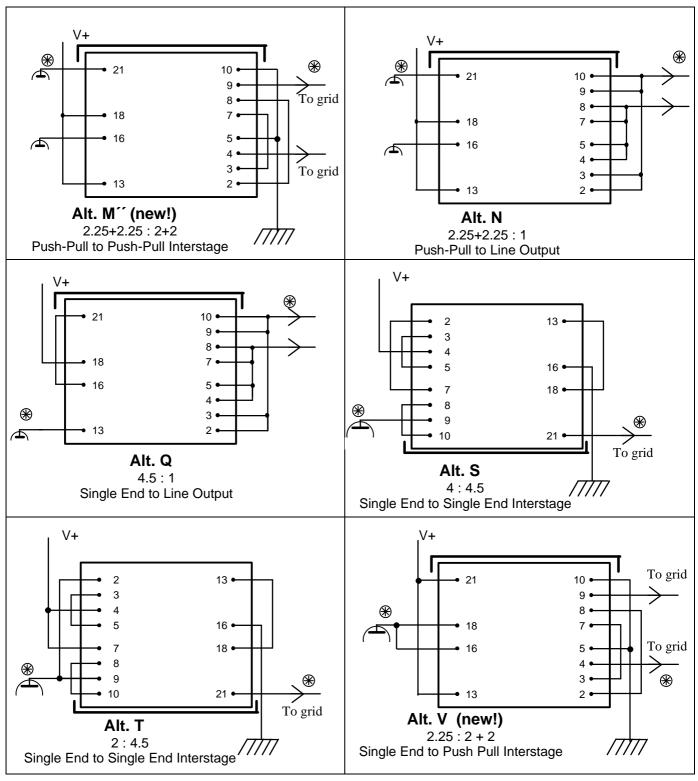
Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

Weight	Turns ratio	Static resistance, winding A	Static resistance, winding B	Static resistance, winding C
0.75 Kg	1+1+1+1: 2.25+2.25	315 Ω	240 Ω	625 Ω

Max. current through any single section:

50 mA

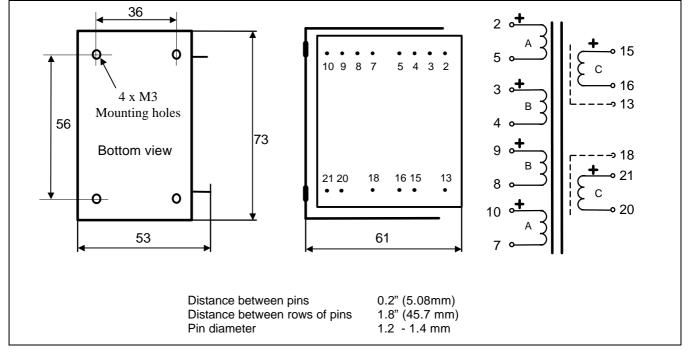
Isolation between primary and secondary windings / between windings and core: 4 kV / 2 kV


Туре	LL1660 PP	LL1660 PP	LL1660/18mA	LL1660/10mA
Connection	Alt M''	Alt N	Alt Q	Alt S
	PP to PP Interst.	PP Line output	SE Line Output	SE to SE Interst.
	2.25+2.25 : 2+2	2.25+2.25:1	4.5 : 1	4:4.5
Primary DC current for	-	-	16 mA	10 mA
0.9 Tesla				
Primary Inductance	290H	290H	100H	130H
Freq. Response (+/-1dB)	20 Hz – 25 kHz	16 Hz – 30 kHz	11 Hz – 35 kHz	25Hz - 40 kHz
@ source impedance (*)	15kΩ	15kΩ	3 kΩ	14 kΩ
Secondaries open				
Max output	2 x 260V r.m.s.	130V r.m.s.	57 V r.m.s.	250 V r.m.s.
voltage @ 30 Hz				

Туре	LL1660/10mA	LL1660/10mA
Connection	Alt T	Alt V
	SE to SE Interst.	SE to PP Interst.
	2:4.5	2.25:2+2
Primary DC current for	20 mA	18 mA
0.9 Tesla		
Primary Inductance	33H	42H
Freq. Response (+/-1dB)	25 Hz - 30 kHz	25 Hz - 30 kHz
@ source impedance (*)	$3.5 \mathrm{k}\Omega$	3.5kΩ
Secondaries open		
Max output	250 V r.m.s.	220 V r.m.s.
voltage @ 30 Hz		

(*) The source impedances used in the tables indicates a recommended upper limit, unless freq. response can be compromised. At lower source impedance resonance peaking will occure. It can be reduced using secondary load resistors.

Tube Amplifier Interstage Transformer / Line Output Transformer LL1660 Connection Alternatives


Alt. $M^{\prime\prime}$ and Alt. V have been introduced to improve balance in PP applications

Tube Amplifier Phase Splitting Interstage Transformer LL1660S

LL1660S is a version of LL1660 with internal Faraday shields to improve balance in phase splitting interstage applications. The transformer is available with different core air gap for different driving tubes. The transformer is wound with a special low capacitance winding technique to achieve best high frequency performance. The transformer has a special high flux, low distortion audio C-core of our own production. The LL1660S is assembled with a small core air gap to allow for some DC current unbalance. For the L1660S, the core air gap is chosen such that the denoted DC current (18mA for a LL1660S/18mA) generates a no signal core flux density of 0.9 Tesla when used with windings 2 through 10 in series. This leaves a flux density swing of 0.7 T for the signal.

Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

Weight	Turns ratio	Static resistance,	Static resistance,	Static resistance,
		winding A	winding B	winding C
0.75 Kg	1+1+1+1: 2.25+2.25	315 Ω	$240 \ \Omega$	625 Ω

42H

25 Hz - 30 kHz

 $3.5k\Omega$

220 V r.m.s.

Max. current through any single section:

Primary Inductance

Secondaries open Max output

voltage @ 30 Hz

Freq. Response (+/-1dB)

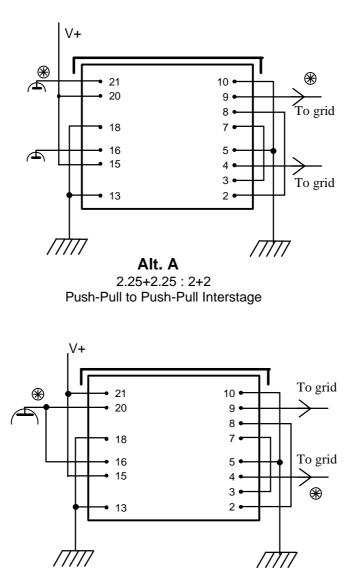
@ source impedance (*)

50 mA Isolation between primary and secondary windings / between windings and core: 4 kV / 2 kV

Туре	LL1660S/PP	LL1660S/10mA
Connection	Alt A	Alt B
	PP to PP Interst.	SE to PP Interst.
	2.25+2.25 : 2+2	2.25:2+2
Primary DC current for	-	18 mA
0 9 Tesla		

290H

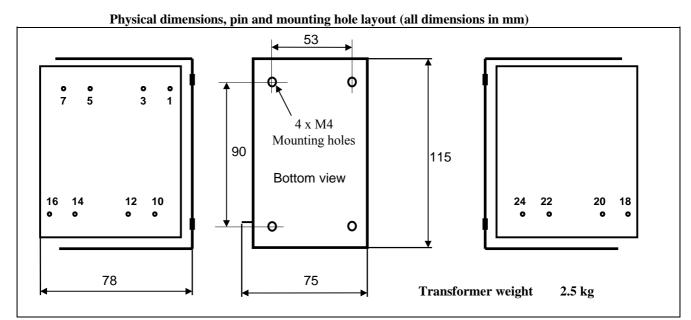
20 Hz - 25 kHz


 $15k\Omega$

2 x 260V r.m.s.

ß
p
ļ
6
ă
ì
$\hat{\mathbf{O}}$

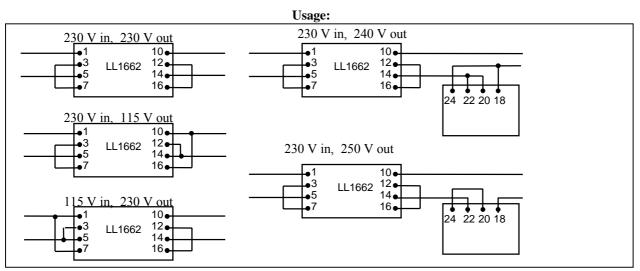
Tube Amplifier Interstage Transformer LL1660S Connection Alternatives



Alt. B 2.25 : 2 + 2 Single End to Push Pull Interstage

Mains Isolation Transformer with Stepup Windings LL1662

LL1662 is a C-core mains transformer for isolation and DC current elimination. The core is assembled with a carefully selected, very small air-gap to compensate for any mains DC-unbalance. Additional two windings of 10V each are provided to compensate for voltage drop and low mains voltage. Estimated power rating 300 VA, which can be increased with good cooling.


	Copper resistance	Voltage at 50 Hz
Windings 1 - 3 and 7 - 5 respectively	3.3 Ω	115V
Windings 10 - 12 and 14 - 16 respectively	2.9 Ω	115V
Windings 18 - 20 and 22 - 24 respectively	0.3 Ω	10V
Isolation between mindings (between mindings and as	41-37/	4 1-17

Isolation between windings / between windings and core

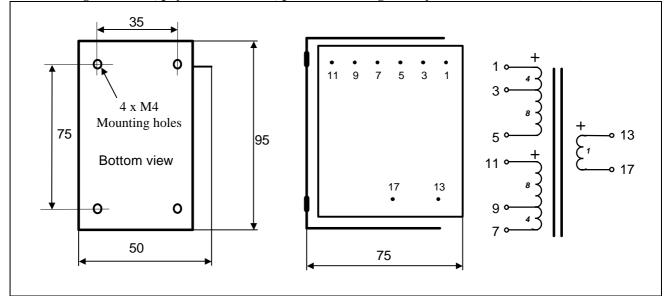
4 kV / 4 kV

Winding schematics:

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
+ + +

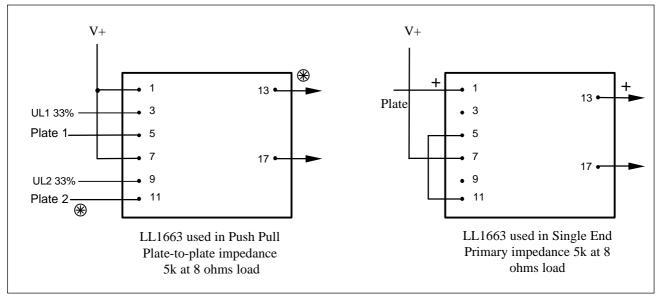
Tibeliusgatan 7	
S-761 50 NORRTÄLJE	
SWEDEN	

Tube amplifier output transformer LL1663 5k : 8 ohms


The LL1663 is a four-sectioned dual coil C-core tube amplifier output transformer for 5 k: 8 ohms impedance ratio available in PP and SE versions.

The coil is wound using our high internal isolation technique with isolation foil between each copper layer. The core is an audio C-core of our own production.

Turns ratio


12+12:1 or (4+8)+(4+8):1

Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

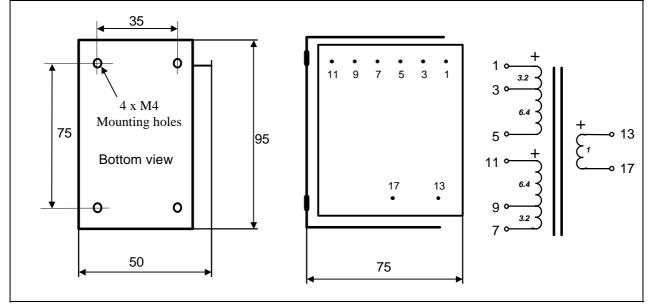
Weight:	1.35 kg
Static resistance of each primary:	102 Ω
Static resistance of secondary:	0.4 Ω
Isolation between windings / between windings and core:	4 kV / 2 kV
Max DC current through any primary winding:	160mA

	LL1663/PP	LL1663/50mA	LL1663/100mA
Primary inductance (approx.)		35H	17H
Max primary signal	450V R.M.S. @ 30 Hz	200V R.M.S. @ 30 Hz	200V R.M.S. @ 30 Hz
Max output power @ 30 Hz	40W (8Ω spkr)	8W (8 Ω spkr)	8W (8Ω spkr)

Suggested use:

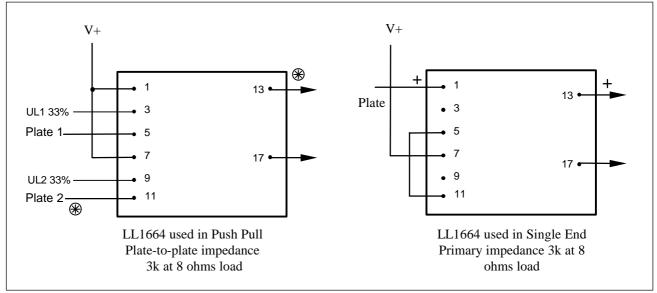
Tibeliusgatan 7	
S-761 50 NORRTÄLJE	-
SWEDEN	

Tube amplifier output transformer LL1664 3k : 8 ohms


The LL1664 is a four-sectioned dual coil C-core tube amplifier output transformer for 3 k: 8 ohms impedance ratio available in PP and SE versions.

The coil is wound using our high internal isolation technique with isolation foil between each copper layer. The core is an audio C-core of our own production.

Turns ratio

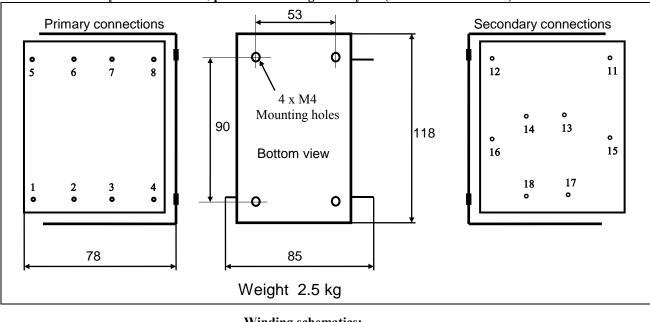

9.6 + 9.6 : 1 or (3.2+6.4)+(3.2+6.4): 1

Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

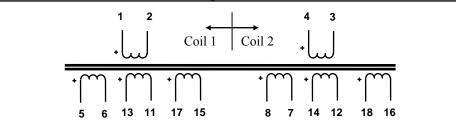
Weight:	1.35 kg
Static resistance of each primary:	74 Ω
Static resistance of secondary:	0.5 Ω
Isolation between windings / between windings and core:	4 kV / 2 kV
Max DC current through any primary winding:	200mA
Primary leakage inductance, primaries in series:	8mH

	LL1664/PP	LL1664/50mA	LL1664/100mA
Primary inductance		35H	17H
Max primary signal	410V R.M.S. @ 30 Hz	180V R.M.S. @ 30 Hz	180V R.M.S. @ 30 Hz
Max output power @ 30 Hz	55W (8Ω spkr)	10W (8Ω spkr)	10W (8Ω spkr)

Suggested use:


16

18


Sec 5

Mains Transformers for Tube Amplifiers LL1665 $230V: 530V + 530V + (4 \times 6.6V)$

C-core mains transformers. The core is assembled with a small air-gap to compensate for any mains DCunbalance. Estimated power rating 250 VA which can be increased with good cooling. Physical dimensions, pin and mounting hole layout (all dimensions in mm)

Winding schematics:

Connection alternatives.

A: 230 V in, 530-0-530V out for tube full wave rectifiers

-8

16

18

Sec 1

530V

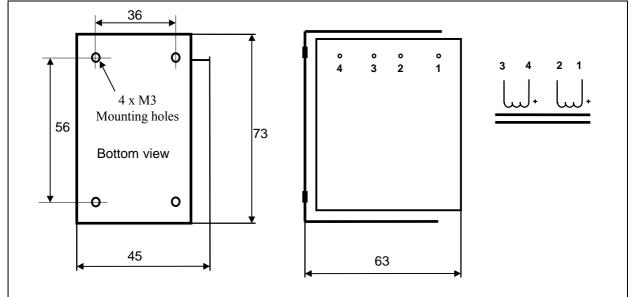
B: 230V in, 530V out for silicon full wave rectifiers Prim Prim Sec 2 Sec 2 13. 230V 13 230V 12. Sec 3 Sec 3 14. 530V 15 15 Sec 1 Sec 4 Sec 4 - 0 -17 17

530V

Copper resistance, no load output voltages and max recommended transformer current (rms) with primary connected to 230 V and Sec 1 connected as above

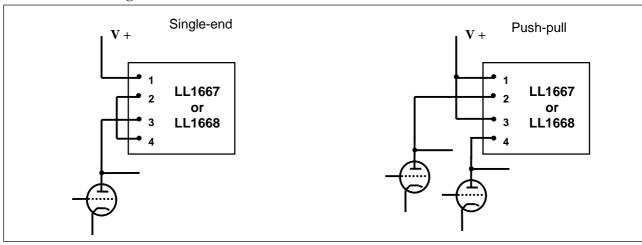
Connection alternative	Primary resistance	Sec 1	Sec 2 through 5 <u>each</u>
Α	7.5 Ω	98 Ω / 530V-0-530V 0.35 A	0.1 Ω / 6.6 V 3.1A
В	7.5 Ω	49 Ω / 530 V 0.5 A	0.1 Ω / 6.6 V 3.1A

Sec 5


Please note! Output current from rectifier: 63% of above with condenser input rectifier, 95% of above with R150220 choke input rectifier

Tube anode chokes LL1667 and LL1668

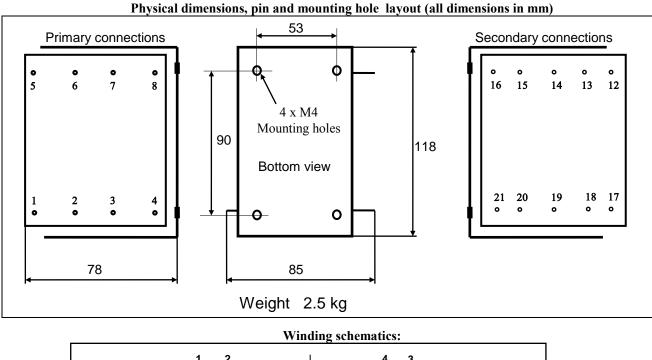
The LL1667 and LL1668 are anode chokes for tube amplifiers. The chokes are built with two coils and are using our own special audio C-core. The coils is made using a low capacitance coil winding technique. The two coil structure greatly reduces the risk of picking up hum caused by external magnetic fields from e.g. mains transformers. The LL1667 and LL1668 are available with different core airgaps resulting in different inductance-DC current combinations on request.

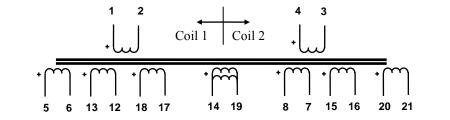

Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

	<u>LL1667</u>	<u>LL1668</u>
Weight:	0.78 kg	0.78 kg
Static resistance of each winding	1.2 kΩ	340 Ω
Max DC current per winding, all applications	40 mA	80 mA
Isolation between windings and core:	4 kV	4 kV

Туре	Approx. inductance (windings in series)	Standing DC current	Saturating DC current	Max signal voltage @ 30 Hz
LL1667 / 15mA	270 H	15 mA	25 mA	390V RMS
LL1668/25 mA	100 H	25mA	40 mA	235V RMS

Usage:



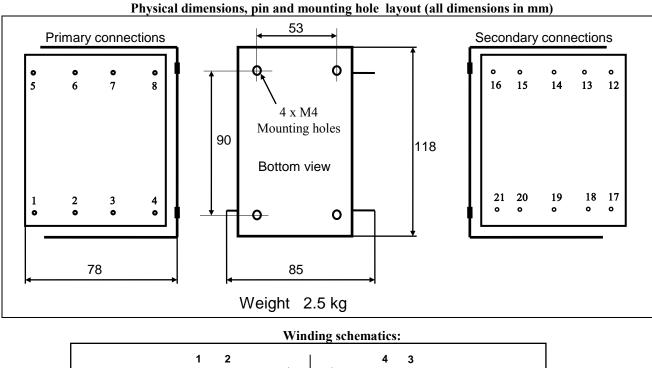

NOTE! In previous shipments (and datasheet) of LL1667 and LL1668 (labeled "Choke LL166..."), the core air gap were incorrectly set. From Nov 1, 2000, airap is corrected and the chokes are labeled "Anode Choke..."

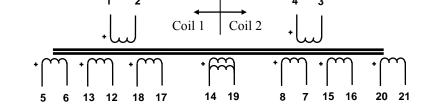
Mains Transformers for Tube Amplifiers LL1669

C-core mains transformer. The core is assembled with a small air-gap to compensate for any mains DC-unbalance. Estimated power rating 250 VA which can be increased with good cooling. Magnetic stray is extremely small if secondaries of the two coils are loaded identically.

Connection alternatives. Primary in series for 230V (left) and in parallel for 115V (right).

Copper resistance, no load output voltages and max recommended transformer current (rms) with primary connected to 230 V serial / 115V parallel and Sec 1 connected as above


Primary res. Serial/parallel	Sec 1	Sec 2	Sec 3	Sec 4	Sec 5	Sec 6
7.5 Ω / 1.9 Ω	28 Ω / 390 V	0.1 Ω / 6.6V	0.1 Ω / 6.6V	0.1 Ω / 6.6 V	0.1 Ω / 6.6 V	35 Ω / 110 V
	0.55 A	3.1A	3.1A	3.1A	3.1A	40mA


Please note! Output current from rectifier: 63% of above with condensor input rectifier, 95% of above with choke input rectifier.

Mains Transformers for Tube Amplifiers LL1669A

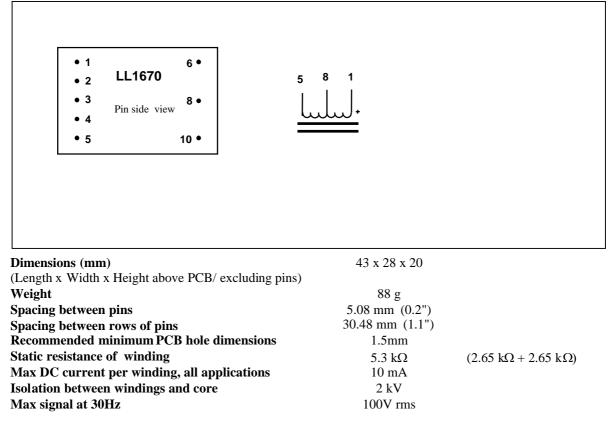
C-core mains transformer. The core is assembled with a small air-gap to compensate for any mains DC-unbalance. Estimated power rating 250 VA which can be increased with good cooling. Magnetic stray is extremely small if secondaries of the two coils are loaded identically.

Connection alternatives. Primary in series for 230V (left) and in parallel for 115V (right).

Prim $\stackrel{\bullet}{\longrightarrow}$ 113 $\stackrel{\bullet}{\longrightarrow}$ Sec 2230V $\stackrel{\bullet}{\longrightarrow}$ 2313 $\stackrel{\bullet}{\longrightarrow}$ Sec 3Sec 1 $\stackrel{\bullet}{\longrightarrow}$ 1515Sec 3 $\stackrel{\bullet}{\longrightarrow}$ 1516Sec 420 $\stackrel{\bullet}{\longrightarrow}$ Sec 51410 $\stackrel{\bullet}{\longrightarrow}$ Sec 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
--	---

Copper resistance, no load output voltages and max recommended transformer current (rms) with primary connected to 230 V serial / 115V parallel and Sec 1 connected as above

Primary res. Serial/parallel	Sec 1	Sec 2	Sec 3	Sec 4	Sec 5	Sec 6
7.5 Ω / 1.9 Ω	28 Ω / 340 V	0.1 Ω / 6.3V	0.1 Ω / 6.3V	0.1 Ω / 6.3 V	0.1 Ω / 6.3 V	35 Ω / 110 V
	0.55 A	3.1A	3.1A	3.1A	3.1A	40mA


Please note! Output current from rectifier: 63% of above with condensor input rectifier, 95% of above with choke input rectifier.

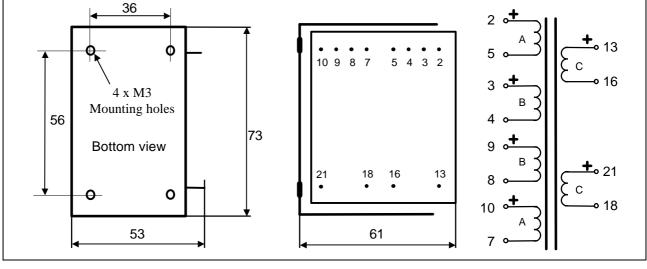
Grid choke LL1670

The LL1670 is a small size, high inductance grid choke for tube amplifiers. The choke is built with two coils and is using one of our own special audio C-cores. The coils is wound using a low capacitance coil winding technique. The two coil structure greatly reduces the risk of picking up hum caused by external magnetic fields from e.g. mains transformers.

Winding schematics, and pin layout

Туре	Inductance (windings in series)	Standing DC current	Saturating DC current
LL1670 / 0.8mA	540 H	0.8 mA	1.2 mA

R060424


High Current Tube Amplifier Interstage / Line Output Transformer LL1671

LL1671 is a high current interstage / line output transformer for tube amplifiers. The transformer is available with various core air gaps optimised for PP or SE drives.

The transformer is wound with a special low capacitance winding technique to achieve best high frequency performance. The transformer has a special high flux, low distortion audio C-core of our own production. The LL1671PP is assembled with a small core air gap to allow for some DC current unbalance.

For the S.E. versions of the LL1671, the core air gap is chosen such that the denoted DC current (30mA for a LL1671/30mA) generates a no signal core flux density of 0.9 Tesla when used with all primaries in series. This leaves a flux density swing of 0.7 T for the signal.

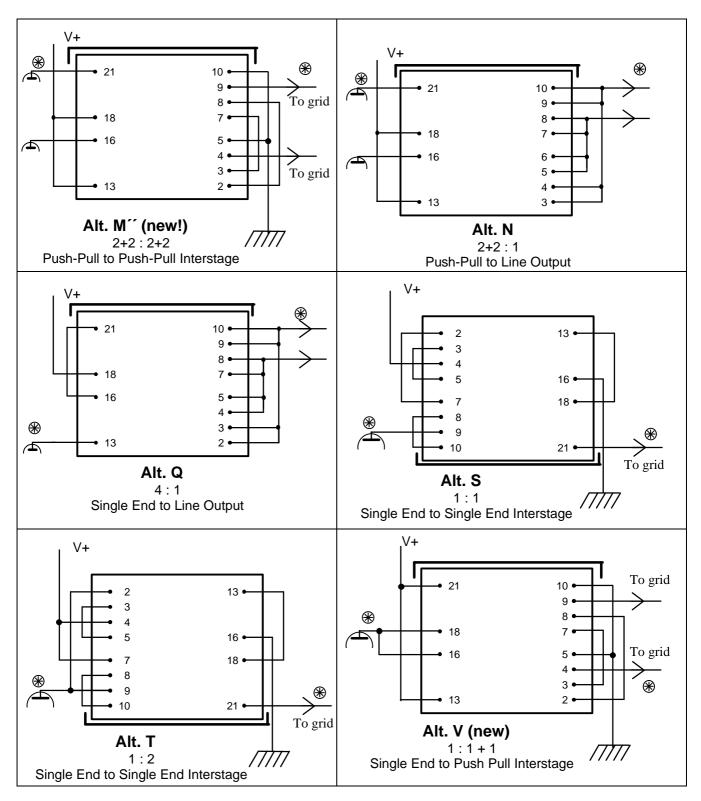
Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

Weight	Turns ratio	Static resistance, Winding A	Static resistance, winding B	Static resistance, winding C
0.75 Kg	1 + 1 + 1 + 1 : 2 + 2	88 Ω	69 Ω	156 Ω

Max. current through any single section:

100 mA

Isolation between primary and secondary windings / between windings and core: 4 kV / 2 kV


Туре	LL1671 PP	LL1671 PP	LL1671/30mA	LL1671/30mA
Connection	Alt M''	Alt N	Alt Q	Alt S
	PP to PP Interst.	PP Line output	SE Line Output	SE to SE Interst.
	2+2:2+2	2+2:1	4:1	1:1
Primary DC current for	-	-	30 mA	30 mA
0.9 Tesla				
Primary Inductance	80 H	80 H	35 H	35 H
Freq. Response (+/-1dB)	20 Hz – 25 kHz	15 Hz – 50 kHz		30Hz - 30 kHz
@ source impedance (*)	5kΩ	5kΩ		3 kΩ
Secondaries open				
Max output	2 x 150V r.m.s.	75V r.m.s.	33 V r.m.s.	130 V r.m.s.
voltage @ 30 Hz				

Туре	LL1671/30mA	LL1671/30mA
Connection	Alt T	Alt V
	SE to SE Interst.	SE to PP Interst.
	1:2	1:1+1
Primary DC current for	60 mA	60 mA
0.9 Tesla		
Primary Inductance	10 H	10 H
Freq. Response (+/-1dB)	40 Hz - 25 kHz	40 Hz - 25 kHz
@ source impedance (*)	1 kΩ	1 kΩ
Secondaries open		
Max output	130 V r.m.s.	130 V r.m.s.
voltage @ 30 Hz		

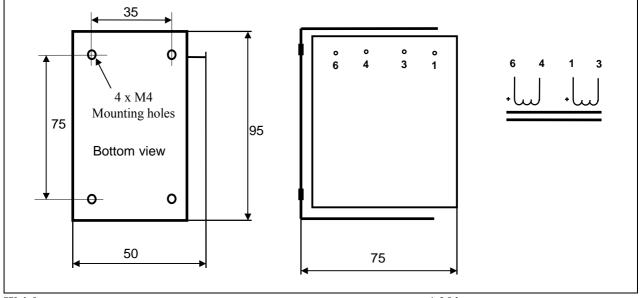
(*) The source impedances used in the tables indicates a recommended upper limit, unless freq. response can be compromised.

At lower source impedance resonance peaking will occur. It can be reduced using secondary load resistors. **LUNDAHL** - TRANSFORMERS -

Tube Amplifier Interstage Transformer / Line Output Transformer LL1671 Connection Alternatives

Hase Indicator

Choke LL1673

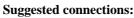

The LL1673 is a 2 coils choke for tube amplifier anode supply.

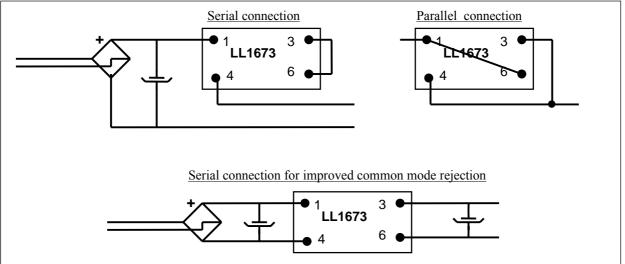
The choke is available with different core air-gap, which results in different inductance and DC current

capability. LL1673 can be used in choke input and cap input applications.

The coil is wound using our standard high internal isolation technique with isolation foil between each copper layer. The core is an audio C-core of our own production.

Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

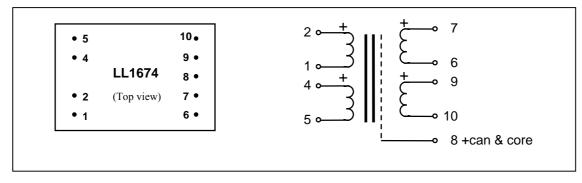



Weight: Static resistance of each winding:

Isolation between windings / between windings and core:

1.35 kg 30 Ω 4 kV / 2 kV

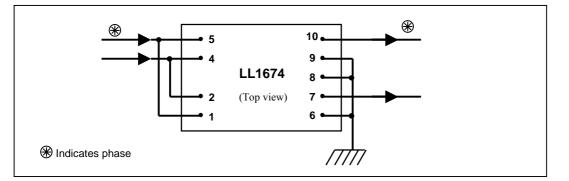
		Coils in series			Coils in parallel	
Туре	In-	Recommended	Saturating	In-	Recommended	Saturating
	ductance	DC current	current	ductance	DC current	current
LL1673 / 10 H	10 H	200 mA	290 mA	2.5 H	400 mA	580 mA
LL1673 / 15 H	15 H	140 mA	200 mA	3.75 H	280 mA	400 mA
LL1673 / 20 H	20 H	100 mA	145 mA	5 H	200 mA	290 mA
Max. ripple voltage		400V rms /			200V rms /	
at rec. DC current		100 Hz			100 Hz	


High Level Tube Amplifier Input Transformer LL1674

The LL1674 is a large, high signal level audio transformer built with the well know Lundahl amorphous core. The LL1674 consists of two coils, each with a two-sectioned primary winding and a high level secondary winding separated by electrostatic shields. The core is a two-component amorphous strip core. The very high mu of the core results in a phase shift of less than 0.5 degree at 10Hz. The transformer is magnetically shielded by a mu metal housing.

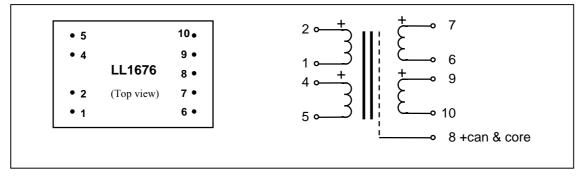
Turns	ratio:
-------	--------

1 + 1 : 4 + 4 43 x 28 x 21


Dims (Length x Width x Height above PCB (mm)): Pin layout (viewed from <u>component</u> side) and winding schematics:

Spacing between pins:	5.08 mm (0.2")
Spacing between rows of pins:	30.48mm (1.2")
Weight:	80 g
Rec. PCB hole diameter:	1.5 mm

Static resistance of each primary (average):	33Ω
Static resistance of each secondary (average):	605Ω
Distortion	22V rms (+29 dBU) secondary level,
(primaries connected in parallel, source impedance 150Ω):	30 Hz: 1%
	22V rms (+29 dBU) secondary level,
	50 Hz: 0.2%
Self resonance point :	70 kHz
Optimum termination for best frequency response	No termination required
(source imp. 150Ω):	
Frequency response	10Hz-45kHz +/- 0.5dB
(source 150Ω , load 10k)	-3dB @ 80kHz
Isolation between primary and secondary windings/ between	3 kV / 1.5 kV
windings and shield (rms):	


High level Tube Amplifier Input Transformer LL1676

The LL1676 is a large, high level, high performance audio transformer built with the well know Lundahl amorphous core

The LL1676 consists of two coils, each with a two-sectioned primary winding and a high level secondary winding separated by electrostatic shields. . The core is a two-component amorphous strip core. The very high mu of the core results in a phase shift of less than 0.5 degree at 10Hz.

The transformer is magnetically shielded by a mu metal housing.

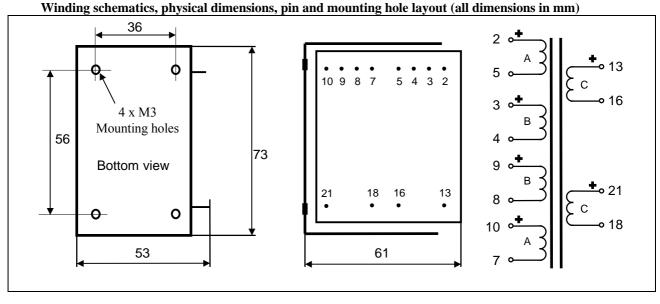
Turns ratio:	1 + 1 : 2 + 2
Dims (Length x Width x Height above PCB (mm)):	43 x 28 x 21
Pin layout (viewed from component side) and winding schematics:	

Spacing between pins: Spacing between rows of pins: Weight: **Rec. PCB hole diameter:**

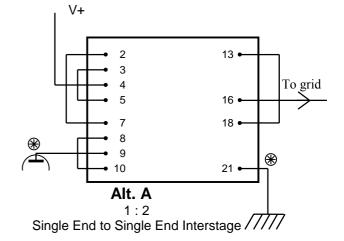
5.08 mm (0.2") 30.48mm (1.2") 80 g 1.5 mm

Static resistance of each primary (average):	145Ω
Static resistance of each secondary (average):	605Ω
Distortion	22V rms (+29 dBU) secondary level,
(primaries connected in parallel, source impedance 600Ω):	30 Hz: 1%
	22V rms (+29 dBU) secondary level,
	50 Hz: 0.2%
Self resonance point :	70 kHz
Optimum termination for best frequency response	10k – 33k
(source imp. 600Ω):	
Frequency response	10Hz – 40kHz +/- 0.5dB
(source 600, load 10k)	-3dB @ 80kHz
Isolation between primary and secondary windings/ between	3 kV / 1.5 kV
windings and shield:	

Suggested usage, 1:2+2



High Current Tube Amplifier Interstage Transformer LL1677


LL1677 is a high current interstage transformer with a 1:2 step up ratio.

The transformer is wound with a special low capacitance winding technique to achieve best high frequency performance. The transformer has a special high flux, low distortion audio C-core of our own production. For the LL1677, the core air gap is chosen such that the denoted DC current (80mA for a LL1677/80mA) generates a no signal core flux density of 1.2 Tesla when used with all primaries in series. This leaves a flux density swing of 0.4 T for the signal.

Weight	Turns ratio	Static resistance,	Static resistance,	Static resistance,
		Winding A	winding B	winding C
0.75 Kg	1+1+1+1:4+4	$88 \ \Omega$	69 Ω	800 Ω

Туре	LL1677/80mA
Connection	Alt A
	SE to SE Interst.
	1:2
Primary DC current for	80 mA
1.2 Tesla	
Primary Inductance	24 H
Suggested termination for best	22k in series with
freq. response	330 pF
Freq. Response (+/-1dB) @	23Hz - 34 kHz
source impedance (*)	1 kΩ
Secondary terminated as above	
Max output	145 V r.m.s.
voltage @ 30 Hz	(410V peak-peak)

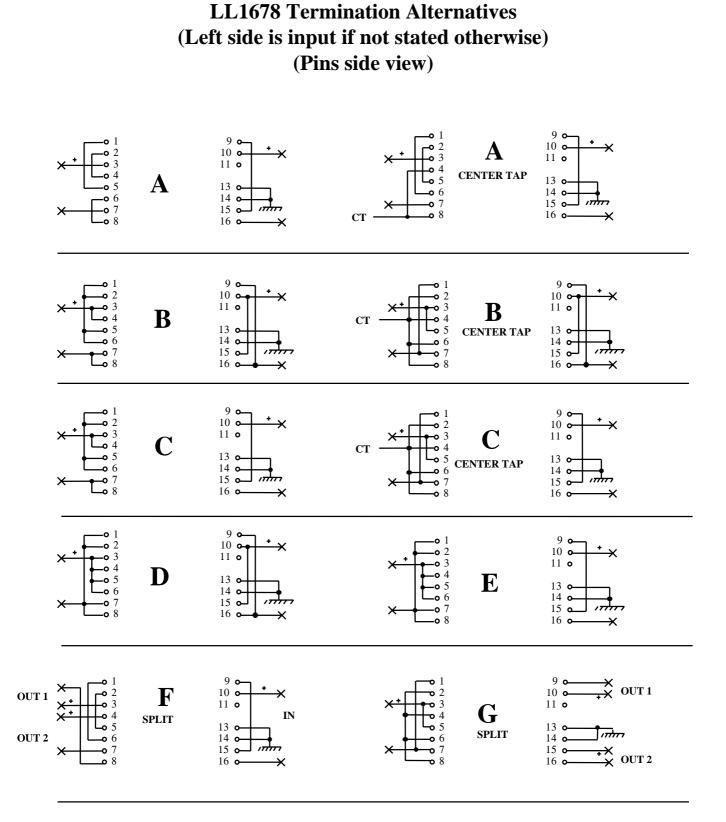
Turns ratio:

1 + 1 + 1 + 1 : 16 + 16

Moving Coil Input Transformer LL1678

LL1678 is an input audio transformer for moving coil pickups. The transformer is built up from two coils, each coil with one secondary winding surrounded by two primary windings. This structure results in an excellent frequency response. All winding ends are available on the pins. Thus, the transformer can be used with a set of different turn's ratios.

The LL1678 is made with amorphous core material. As this type of core does not store energy (unlike e.g. conventional mu-metal cores) the low frequency resonance with external series capacitors is practically eliminated.

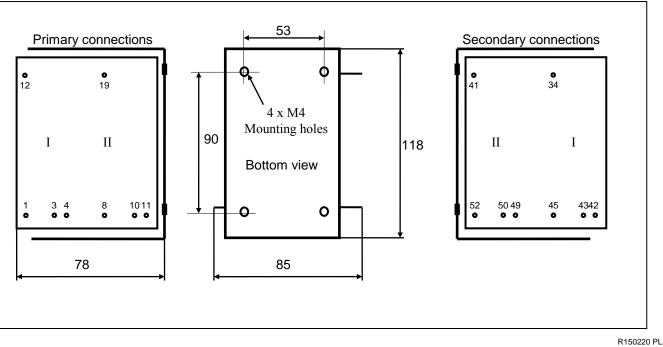

Layout (viewee	l from <u>pins</u> side) and windings sch	
		² ⁺ ⁺ ⁹
		3 <u>3</u> 3
o 1 o 2	9 o 10 o	4 •
o 3 o 4	11 o	8 • +
o 5 o 6 o 7	13 o 14 o 15 o	$7 \xrightarrow{+} 16$
o 8	16 o	
		₅ •
		Can + Core 13, 14

Spacing between pins:	Spacing between rows of pins:	Rec. PCB hole diameter:	Weight:
2.54 mm (0.1")	22.86 mm (0.9")	1.5 mm	27 g

Static resistance of <u>each</u> primary (average):	4.5 Ω
Static resistance of <u>each</u> secondary:	375 Ω
Frequency response (primary signal level -17 dBU [0.1Vrms].	
Termination alternative A. Source 50Ω , load $100 \text{ k}\Omega$):	
Balanced/unbalanced input. Balanced output	10 Hz 90 kHz +/- 1 dB
Balanced/unbalanced input. Unbalanced output	10 Hz 35 kHz +/- 1 dB
Distortion (primaries connected in series,	< 0.5% @ -8 dBU, 50 Hz
source impedance 50Ω):	
Primary no load impedance @ 0 dBU, 50 Hz, all in series:	8 k Ω typically
Core / Can:	Amorphous Strip Core / Mu metal can
Isolation between windings / between windings and core:	3 kV / 1.5 kV

Turns ratio and possible use at different termination alternatives.				
1	Termination	alternatives are shown	on the next page	
Termination	Turns	Copper Resistance	Possible Use	
Alternative	ratio	prim/sec		
		[^]		
Α	1:8	18Ω / 750 Ω	150Ω / 10 kΩ	
В	1:8	4.5Ω / 190 Ω	Not recommended	
С	1:16	4.5Ω / 790 Ω	25Ω / 10kΩ	
D	1:16	1.1Ω / 190 Ω	Not recommended	
Е	1:32	1.1Ω / 790 Ω	$10\Omega / 10k\Omega$	

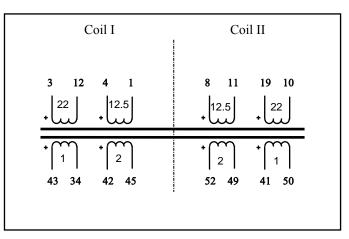
When the LL1678 is used in MC pickup applications, please note that the primary side of the transformer must have a ground reference.



Tube Amplifier Output Transformers <u>LL1679</u>

LL1679 is an output transformer for tube amplifiers, available with different core air-gaps for different types of output stages. The transformers are highly sectioned with harmonically sized sections, which results in a minimum leakage inductance. This combined with a low capacitance coil winding technique results in a wide frequency range. The primary winding can be tapped for 36% UL connection.

The transformers have a special audio C-core of our own production.


The transformers are unpotted, open frame type suitable for mounting inside an amplifier housing.

Physical dimensions, pin and mounting hole layout LL1679 (all dimensions in mm)

Pin spacing module: Row spacing: Weight: Turns ratio: 5.08 mm (0.2") 76mm approx. 2.5 kg 22 + 12.5 + 22 + 12.5 : 2 + 1 + 2 + 1

Winding schematics:

		LL1679	
Turns ratio:	22 + 12.5 + 22 + 12.5 : 2 + 1 + 2 + 1		
Static resistance of primary (all in series)	$160 \Omega (2 x 54 \Omega + 2 x 26 \Omega)$		
Static resistance of inner/outer secondary winding	0.5Ω / 0.3Ω		
Primary leakage inductance (all in series)	8 mH		
Max. primary <u>signal</u> voltage r.m.s. at 30 Hz (all in series)	Push-Pull 670V	Single End 295V	

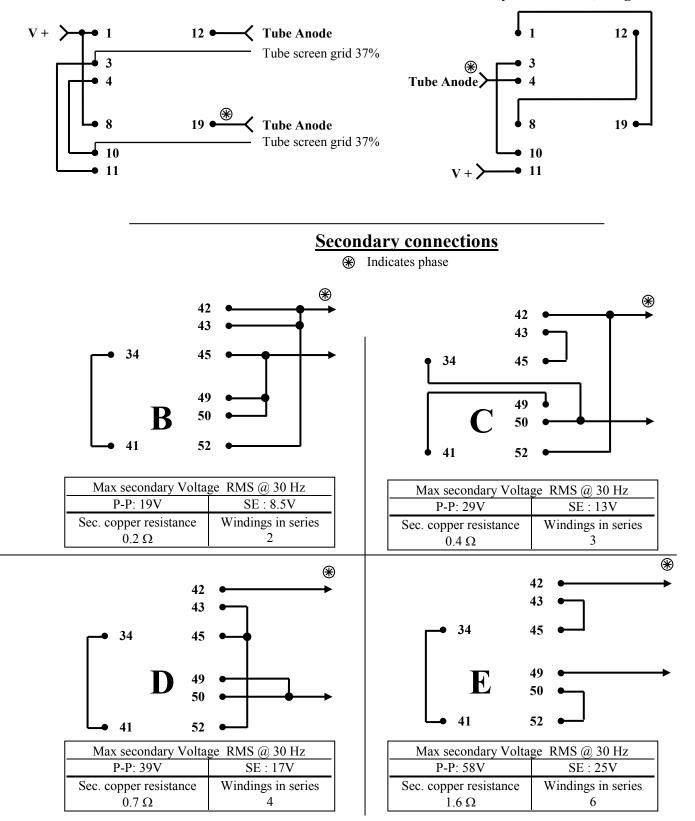
Isolation between primary and secondary windings / between windings and core: 3 kV / 1.5 kV

Electrical characteristics

Primary Load Impedance, Max power and power loss. Sec. connection for $4/8/16 \Omega$ (See next page) -/B/C B/C/D C/D/E **Primary Load Impedance** (transformer copper resistance included) LL1679 9.7 kΩ 4.5 kΩ 2.6 kΩ **Power and Loss** Max. Power, P-P at 30 Hz 45W 188W 105W Max. Power, S.E. at 30 Hz 9W 20W 36W 0.2 dB 0.4 dB 0.6 dB **Power loss across** transformer

Primary DC Current Core Air-gap and Primary inductance

	LL1679/PP	LL1679/70mA
Core Airgap	25 μ	190 µ
(delta/2)		
Single end standing current for 0.9 Tesla		70mA
(recommended operating point)		
Primary inductance	150 H	40H


Frequency response, LL1679/PP

10 Hz – 70 kHz +0/-3 dB

(source impedance 2k, load impedance 10 ohms primary winding is series, secondary winding alt. C)

Primary connections, Push-Pull

Primary connections, Single End

	LL1679		
Turns ratio:	22 + 12.5 + 22 + 12.5 : 2 + 1 + 2 + 1		
Static resistance of primary (all in series)	$160 \Omega (2 x 54 \Omega + 2 x 26 \Omega)$		
Static resistance of inner/outer secondary winding	0.5Ω / 0.3Ω		
Primary leakage inductance (all in series)	8 mH		
Max. primary <u>signal</u> voltage r.m.s. at 30 Hz (all in series)	Push-Pull 670V	Single End 295V	

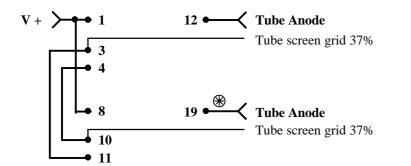
Isolation between primary and secondary windings / between windings and core: 3 kV / 1.5 kV

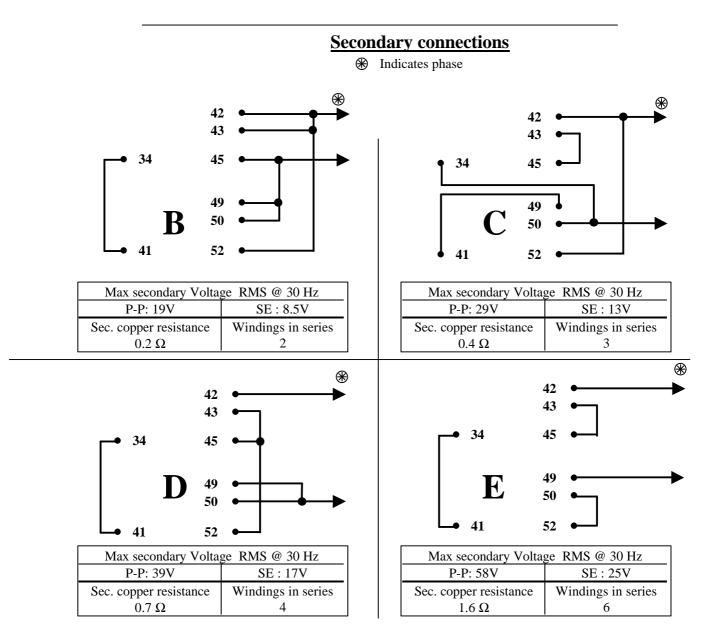
Electrical characteristics

Primary Load Impedance, Max power and power loss.

Timary Load Impedance, what power and power loss.				
	Sec. connection for 4/8/16 W			
	(See next page)			
	-/B/C B/C/D C/D/E			
	Primary Load Impedance (transformer copper resistance included)			
LL1679	9.7 kΩ	4.5 kΩ	2.6 kΩ	
	Power and Loss			
Max. Power, P-P at 30 Hz	45W	105W	188W	
Max. Power, S.E. at 30 Hz	9W	20W	36W	
Power loss across	0.2 dB	0.4 dB	0.6 dB	
transformer				

Primary DC Current Core Air-gap and Primary inductance


	LL1679/PP
Core Airgap	25 μ
(delta/2)	
Single end standing current for 0.9 Tesla	
(recommended operating point)	
Primary inductance	150 H

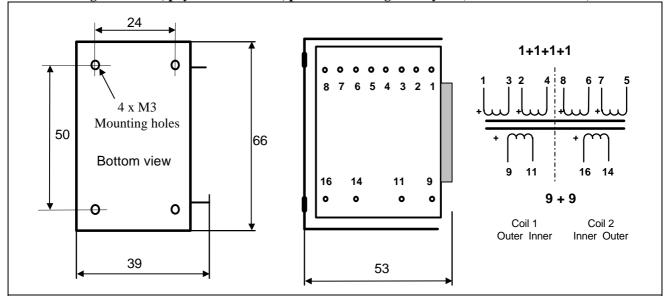

Frequency response, LL1679/PP

10 Hz - 70 kHz +0/-3 dB

(source impedance 2k, load impedance 10 ohms primary winding is series, secondary winding alt. C)

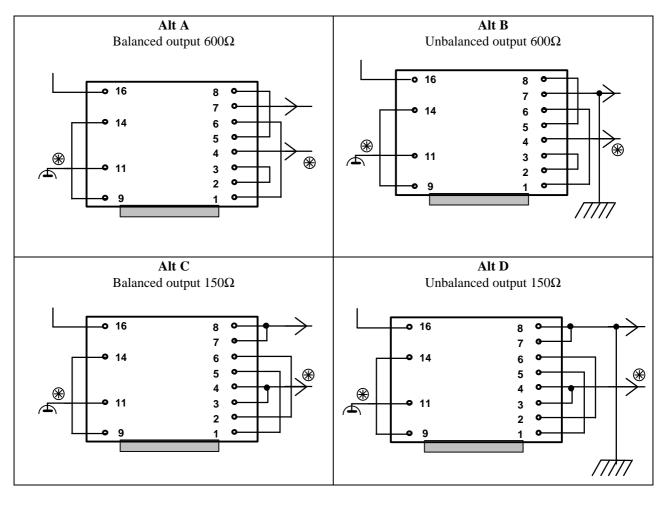
Primary connections, Push-Pull

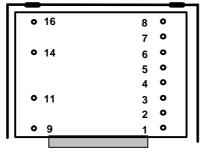
Line Output Transformer for Tube Amplifiers LL1680


The LL1680 line output transformer is made to match or exceed the specs of the UTC transformer LS-27. The LS-27 was used in the RCA Tube Mike Pre (which was used in BC-2B Consoles).

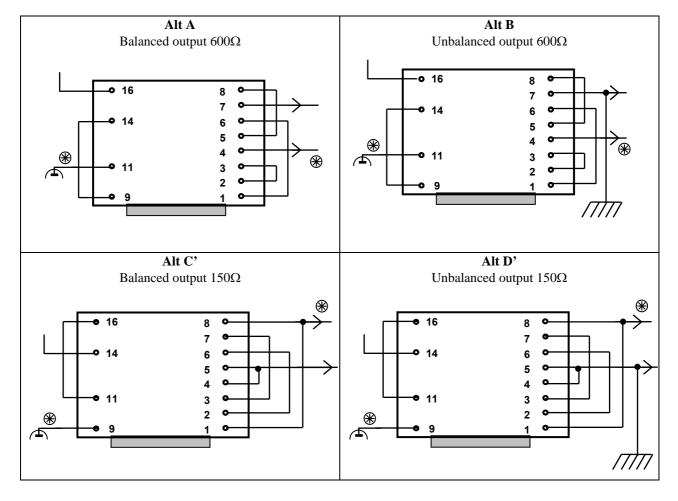
For the internal insulation of the LL1680 high impedance sections we have used paper (and not polypropylene foil) to minimize internal capacitance. Each coil consists of three sections to optimize leakage inductance versus interwinding capacitance. The transformer has a special audio C-core of our own production.

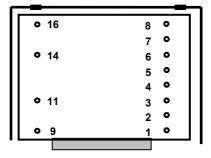
9 + 9 : 1 + 1 + 1 + 1


Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

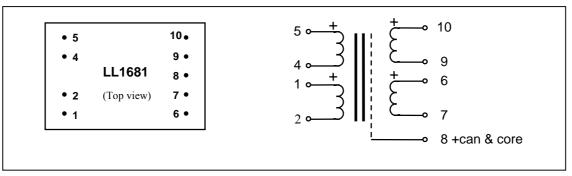

Weight	Turns ratio	Static resistance, winding 9-11 and 16-14	Static resistance, winding 2-4 and 8-6	Static resistance, winding 1-3 and 7-5
0.35 Kg	9+9:1+1+1+1	580 Ω	Î1 Ω	15 Ω

Isolation between primary and secondary windings / between windings and core: Max standing DC current through any primary section 4 kV / 2 kV 50 mA


Туре	LL1680/5mA	LL1680/5mA	LL1680/5mA	LL1680/5mA
Application	15k : 600 ohm	15k : 600 ohm	15k : 150 ohm	15k : 150 ohm
	Balanced output	Unbalanced	Balanced output	Unbalanced
		output		output
Connection	Alt A	Alt B	Alt C	Alt D
Turns ratio	18:4	18:4	18:2	18:2
Primary DC current for 0.9	5mA	5mA	5mA	5mA
Tesla				
Primary Inductance	210H	210H	210H	210H
Frequence response,				
+0, -1.5dB (ref. 1kHz)	15 Hz - 50 kHz	15 Hz – 40 kHz	15 Hz – 55 kHz	15 Hz - 40 kHz
Source impedance	$15k\Omega$	15kΩ	15kΩ	$15k\Omega$
Load	$600 \ \Omega$	$600 \ \Omega$	150 Ω	150 Ω
Max primary signal voltage	150V	150V	150V	150V
(RMS) at 30 Hz				
Max output	33V RMS	33VRMS.	16V RMS	16V RMS
voltage @ 30 Hz				

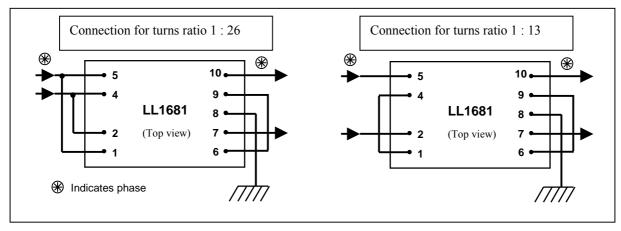

Tube Amplifier Line Output Transformer LL1680 Connection Alternatives

Tube Amplifier Line Output Transformer LL1680 Connection Alternatives



Moving Coil Input Transformer LL1681

The LL1681 is a large core moving coil input transformer with a mu-metal core. The LL1681 consists of two coils, each with a two-sectioned primary winding and one high level secondary winding (with paper insulation) separated by electrostatic shields. The transformer is magnetically shielded by a mu metal housing.

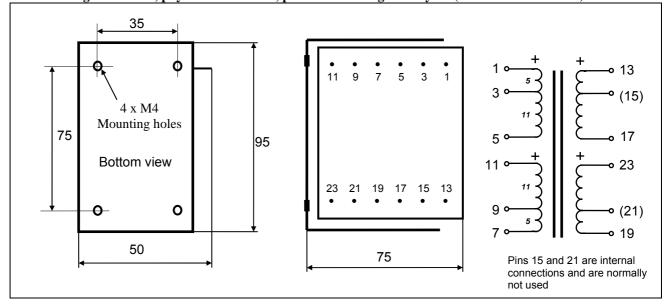

1 + 1 : 13 + 13 48 x 29 x 20

Dims (Length x Width x Height above PCB (mm)): Pin layout (viewed from <u>component</u> side) and winding schematics:

Spacing between pins:	5.08 mm (0.2")
Spacing between rows of pins:	35.56mm (1.4")
Weight:	90 g
Rec. PCB hole diameter:	1.5 mm

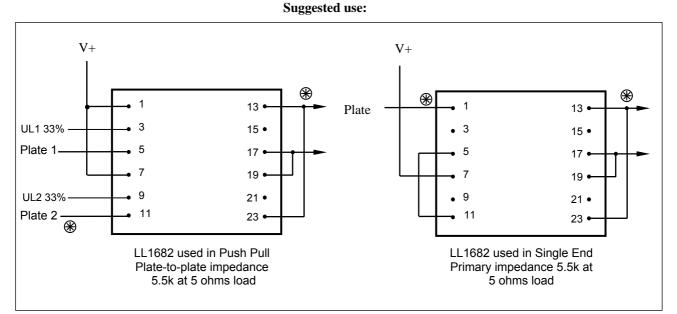
Static resistance of each primary:	4.8Ω
Static resistance of each secondary:	820Ω
Distortion	< 0.15% at -10 dBU, 50Hz
(Transformer connected 1:26, source impedance 40 ohms)	(typically 0.1%)
	< 1% at +5 dBU, 50Hz
Frequency response, balanced input	7Hz – 70 kHz +/- 1dB
(Transformer connected 1:13, source 50Hz, sec. level +10dBU)	
Frequency response, Unbalanced input	7Hz – 40 kHz +/- 1dB
(Transformer connected 1:13, source 50Hz, sec. level +10dBU)	
Isolation between primary and secondary windings/ between	4 kV / 2 kV
windings and shield:	

Tibeliusgatan 7
S-761 50 NORRTÄLJE
SWEDEN


Tube amplifier output transformer LL1682 5.5k : 5 ohms

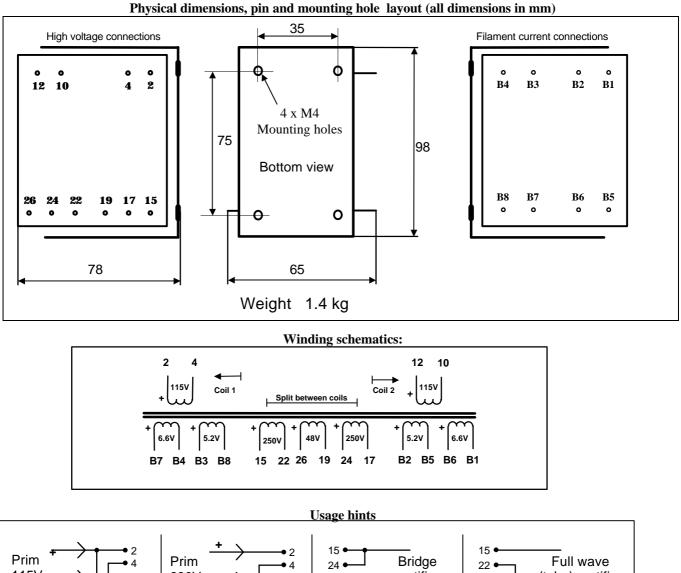
The LL1682 is a four-sectioned, dual coil C-core tube amplifier output transformer for 5.5k: 5 ohms impedance ratio available in PP and SE versions.

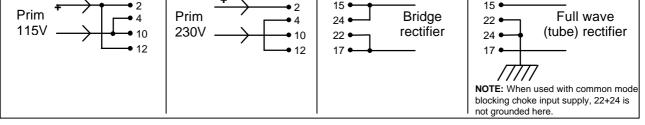
The coil is wound using our standard high internal isolation technique with isolation foil between each copper layer. The core is an audio C-core of our own production.


Turns ratio

16+16:1+1 or (5+11)+(5+11):1+1 Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

Weight: Static resistance of each primary: Static resistance of secondary (connected in parallel as below): Isolation between windings / between windings and core: Max recommended DC current through any primary winding: 1.35 kg 105Ω 0.4 Ω 4 kV / 2 kV 160mA


	LL1682/PP	LL1682/50mA	LL1682/100mA
Primary inductance (approx)	100H	35H	17H
Max primary signal	450V R.M.S. @ 30 Hz	200V R.M.S. @ 30 Hz	200V R.M.S. @ 30 Hz
Max output power @ 30 Hz	40W (5Ω spkr)	8W (5 Ω spkr)	8W (5 Ω spkr)



Mains Transformers for Tube Amplifiers LL1683

C-core mains transformer. The core is assembled with a small air-gap to compensate for any mains DC-unbalance. Estimated power rating 120 VA, which can be increased with good cooling. The 2 x 250V secondaries are internally divided between the two coils. As a result, the transformer can be used with bridge or full wave rectifiers without a problem of asymmetric load. Magnetic stray is extremely small if filament secondaries of the two coils are loaded identically.

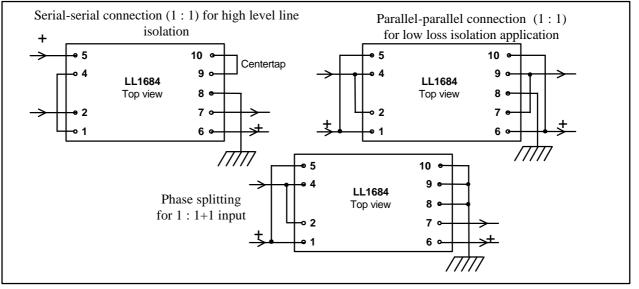
No load output voltage, max recommended transformer current (rms) and coil resistance with primary connected to 230 V series / 115V parallel

	connected to 250 v series / 115 v paranei						
Primary res.	Sec 1	Sec 2	Sec 3	Sec 4	Sec 5	Sec 6	Sec 6
Series/parallel	Pins 15 - 22	Pins 24 - 17	Pins 26 - 19	Pins B7 – B4	Pins B6 – B1	Pins B3 – B8	Pins B2 – B5
$7.5~\Omega$ / $1.9~\Omega$	250V / 80mA	250V / 80mA	48V / 0.1A	6.6 V / 3A	6.6 V / 3A	5.2 V / 3A	5.2 V/ 3A
	100Ω	100Ω	40Ω	0.2 Ω	0.2 Ω	0.2Ω	0.2Ω

Please note! Output current from rectifier: 63% of above with cap. input rectifier, 95% of above with choke input rectifier. R030423

High Level General Purpose Transformer LL1684

LL1684 is a high-level, general-purpose, amorphous core transformer which can be used for microphone or line input, for line output and for galvanic isolation. The windings are arranged to give perfect symmetry if the transformer is used in phase splitting input applications. The two coils structure also greatly improves immunity to external magnetic fields from e.g. power supplies and motors. Primary and secondary windings are separated by electrostatic shields.. The transformer is housed in a mu-metal can.


1 + 1 : 1 + 1

Turns ratio:

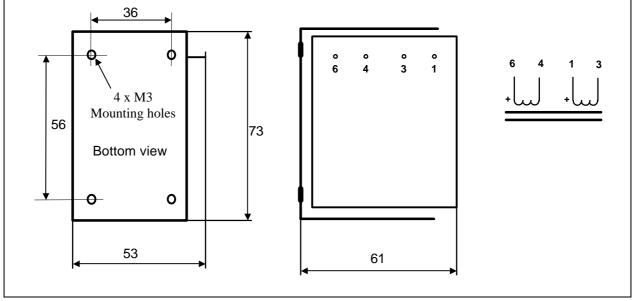
Pin layout (viewed from <u>component</u> side) and winding schematics:

			1 • — + II • — • 10
° 5		10 •	
o 4	LL1684	9 0	2 ~~~~ 7
	Top view	8 •	$5 \longrightarrow 10^{+} 0^{+} 6$
° 2		7 •	<u>ξ</u> ξ
o 1		6 •	4 ~~~~ ~~~~ 9
			└── ० 8

	en rows of pins	42 x 28 x 22 5.08 mm (0.2") 30.5 mm (1.2") 1.5 mm 81 g 41Ω 41Ω
Distortion	(primaries connected in series, source impedance 150Ω):	+ 23 dBU 0.1% @ 50 Hz + 25 dBU <1 % @ 50 Hz
Distortion	(primaries connected in parallel, source impedance 150Ω):	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Self resonance Frequency resp	point: oonse (source 150Ω, load 10 kΩ, serial connection):	> 250 kHz 10 Hz 100 kHz +/- 1.0 dB
Suggested load	(deviation from linear phase) for best square wave response en windings/ between windings and shield:	20 Hz – 20kHz, +/- 0.5° 10k // 1k + 3nF 3 kV / 1.5 kV

Connection alternatives and suggested applications:

Choke LL1685

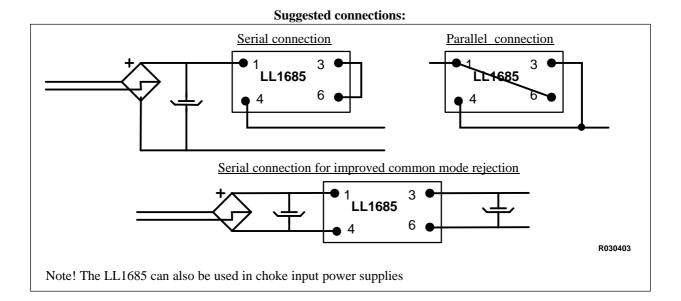

The LL1685 is a 2 coils choke for tube amplifier anode supply.

The choke is available with different core air-gap, which results in different inductance and DC current

capability. LL1685 can be used in choke input and cap input applications.

The coil is wound using our standard high internal isolation technique with isolation foil between each copper layer. The core is an audio C-core of our own production.

Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

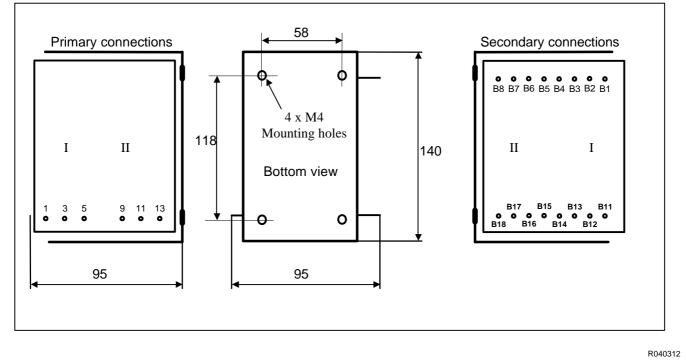

Weight:

Static resistance of each winding:

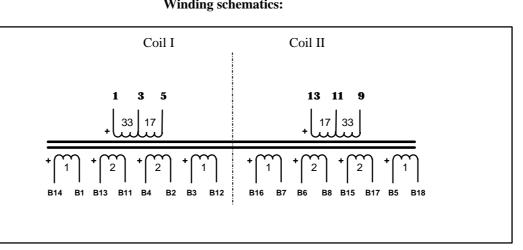
Isolation between windings / between windings and core:

	Coils in series			Coils in parallel		
Туре	Approx.	Approx. Recommended Saturating		Approx.	Recommended	Saturating
	Inductance	DC current	current	Inductance	DC current	current
LL1685 / 100mA	17 H	100 mA	145 mA	4 H	200 mA	290 mA
LL1685 / 130mA	13 H	130 mA	190 mA	3 H	260 mA	380 mA
LL1685 / 160 mA	10 H	160 mA	230 mA	2.5 H	360 mA	460 mA
Max. ripple voltage	330V rms /				165V rms /	
at rec. DC current	100 Hz			100 Hz		
(Ripple voltage is approx.						
0.42 x input voltage)						

Tube Amplifier Output Transformers <u>LL1688</u>


LL1688 is an output transformer, designed primarily for 845 tube amplifiers, but the LL1688 is available with different core air-gaps for different types of output stages. The transformers are highly sectioned with harmonically sized sections, which results in a minimum leakage inductance. This, combined with a low capacitance coil winding technique results in a wide frequency range.

The primary winding can be tapped for 33% UL connection.


The transformers have a special audio C-core of our own production.

The transformers are unpotted, open frame type suitable for mounting inside an amplifier housing.

Physical dimensions, pin and mounting hole layout LL1688 (all dimensions in mm)

Pin spacing module:	5.08 mm (0.2")
Row spacing:	91 mm approx.
Weight:	4 kg
Turns ratio:	50 + 50 : 1 + 2 + 2 + 1 + 1 + 2 + 2 + 1
	Winding schematics

	LL1688		
Turns ratio:	50 + 50 : 1	+2+2+1+1+2+2+1	
Static resistance of primary (all in series)	$260 \ \Omega \ (130 \Omega + 130 \Omega)$		
Static resistance of secondary windings (in -> out)	0.3Ω, 0.7Ω, 0.7Ω, 0.4Ω		
Primary leakage inductance (all in series)	7 mH		
Max recommended primary DC current (heat dissip. 10W)	200mA		
Max. primary <u>signal</u> voltage r.m.s. at 30 Hz (all in series)	Push-Pull (1.6T) 1220V	Single End (0.7T) 530V	

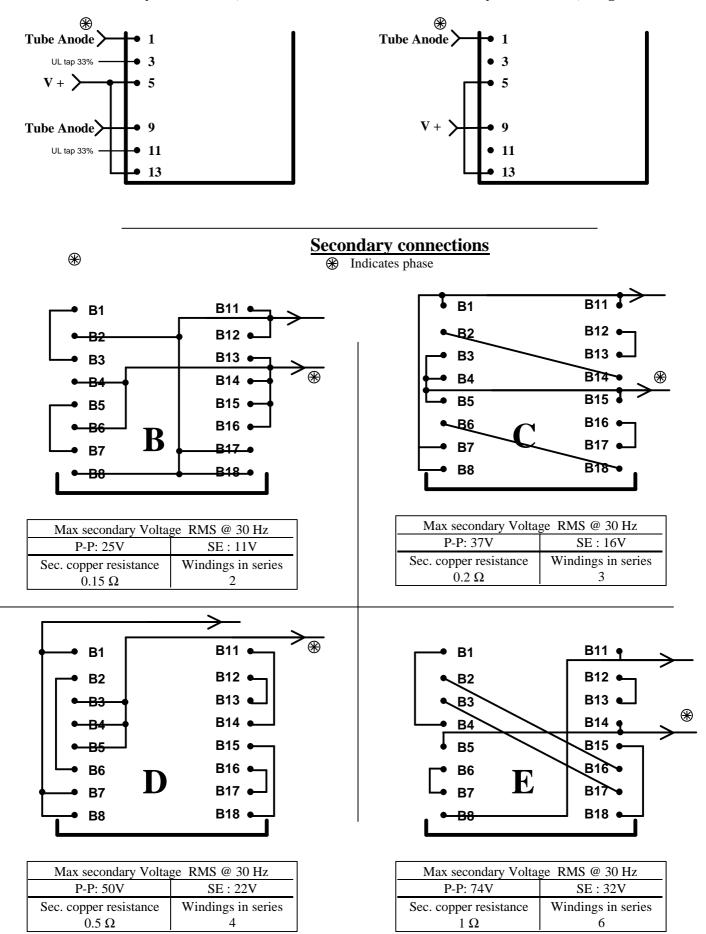
Isolation between primary and secondary windings / between windings and core: 4 kV / 2 kV

Electrical characteristics

Primary Load Impedance, Max power and power loss.				
	Sec. connection for 4/8/16 W			
	(See next page)			
	-/B/C	B/C/D	C/D/E	
	Primary Load Impedance (transformer copper resistance included)			
LL1688	20.5 kΩ 9.2 kΩ 5.5 kΩ			
	Power and Loss			
Max. Power, P-P at 30 Hz	72W	160W	320W	
Max. Power, S.E. at 30 Hz	15W	30W	60W	
Power loss across	0.15 dB	0.25 dB	0.5 dB	
transformer				

Primary DC Current Core Air-gap and Primary inductance

	LL1688/70mA
Core Airgap	240 μ
(delta/2)	
Single end standing current for 0.9 Tesla	70mA
(recommended operating point)	
Primary inductance	70 H


Frequency response, LL1688/70mA

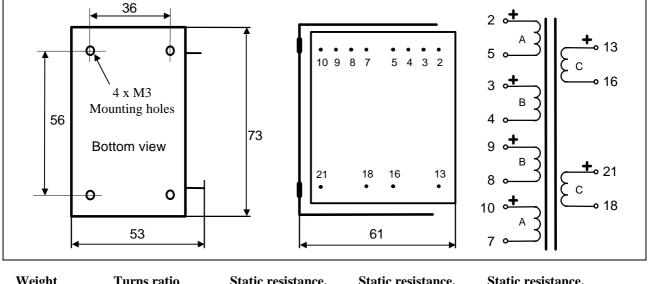
(source impedance 2.2k, load impedance 10 ohms. Primary winding is series, secondary winding "alt. C". Secondary winding not grounded. Primary signal level approx 10V)

 $\begin{array}{l} 10 \ Hz - 25 kHz \ +0 \ / \ -1 \ dB \\ 5 Hz - 33 \ kHz \ +0 \ / \ -3 \ dB \end{array}$

Primary connections, Push-Pull

Primary connections, Singe End

Line Output Transformer LL1689


LL1689 is a line output transformer for tube amplifiers. The transformer is available with different core air gap for PP or SE drives.

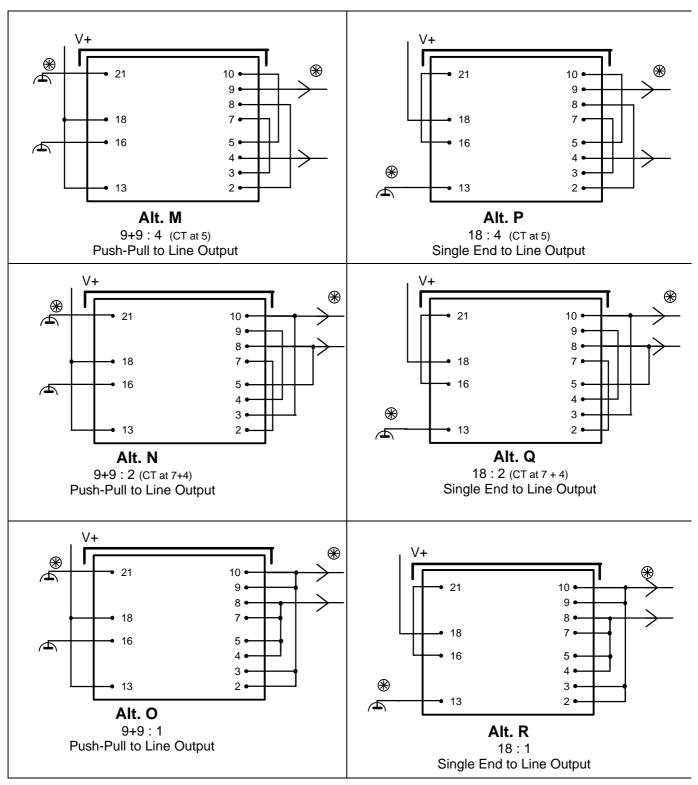
The transformer primaries are wound with a special low capacitance winding technique to achieve best high frequency performance. The transformer has a special high flux, low distortion audio C-core of our own production.

The LL1689PP is assembled with a small core air gap to allow for some DC current unbalance.

For the S.E. versions of the LL1689, the core air gap is chosen such that the denoted DC current (18mA for a LL1689/18mA) generates a no signal core flux density of 0.9 Tesla when used with all primaries in series. This leaves a flux density swing of 0.7 T for the signal.

Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

Weight	Turns ratio	Static resistance, winding A	Static resistance, winding B	Static resistance, winding C
0.75 Kg	9+9:1+1+1+1	19 Ω	15 Ω	655 Ω


Max. current through any primary ("C") section:

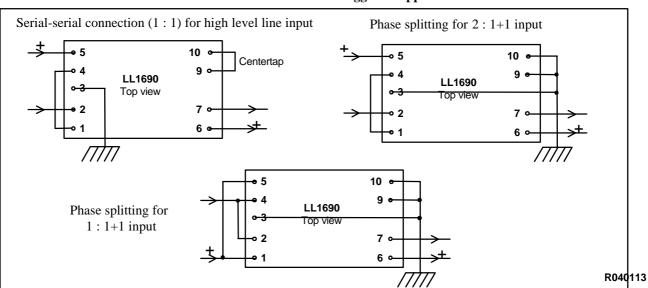
50 mA Isolation between primary and secondary windings / between windings and core: 4 kV / 2 kV

Туре	LL1689/PP	LL1689/PP	LL1689/PP	LL1689/18mA
Connection	Alt M	Alt N	Alt O	Alt P
	PP to Line Out.	PP to Line Out.	PP to Line Out.	SE to Line Out.
	9+9:4	9+9:2	9+9:1	18:4
Primary DC current for 0.9	-	-		18 mA
Tesla			560	
Primary Inductance	290 H	290 H 🔨 🌔	(290H)	90H
Freq. Response (+/-1dB) @	Hz – kHz		200	
source impedance (*)	15kΩ	15kQ) \ \`	\smile 15 k Ω	3 kΩ
Secondaries open	\sim			
Max sec. voltage	128V (r.m.s.)	64V r.m.s.	32V r.m.s.	56 V r.m.s.
@ 30 Hz	(a) (b)			
Type	LL1689/18mA	LL1689/18mA		· 1
Connection	Alt Q	Alt R		source impedances use oles indicates a
	SE to Line Out.	SE to Line Out.		
	18:2	18:1		ended upper limit, eq. response can be
Primary DC current for 0.9	18 mA	18 mA	compron	
Tesla				source impedance
Primary Inductance	90H	90H		e peaking will occure
Freq. Response (+/-1dB) @				reduced using
source impedance (*)	3.5kΩ	3.5kΩ		y load resistors.
Secondaries open			secondar	J 1044 105151015.
Max output	28 V r.m.s.	14 V r.m.s.		
voltage @ 30 Hz				R040407

Tube Amplifier Interstage Transformer / Line Output Transformer LL1689 Connection Alternatives

Amorphous Core High Level Line Input Transformer LL1690

LL1690 is a high-level line input transformer with an uncut cobalt-based amorphous strip core. The transformer is designed for high end audio applications such as tube amplifier line input with or without phase splitting. The windings are arranged to give a high degree of symmetry if the transformer is used for phase splitting. The dual-coil structure also greatly improves immunity to external magnetic fields from e.g. power supplies and motors. Primary and secondary windings are separated by electrostatic shields... The transformer is housed in a mu-metal can.


1 + 1 : 1 + 1

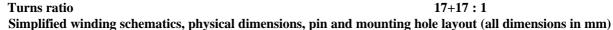
Turns ratio:

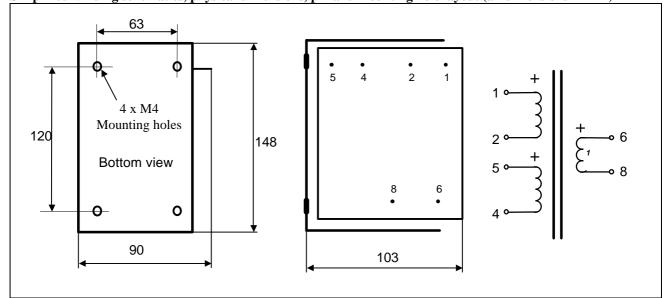
Pin layout (viewed from component side) and winding schematics:

			1 • • • 11 • • 10
° 5		10 •	
° 4	LL1690	9 0	2 ~ 1 (~ 7
o 3	Top view		5 • + + • 6
° 2		7 °	ξ ξ
o 1		6 °	4 •• •• 9
			└── ० 3

Dimensions Spacing betwee Spacing betwee	en pins	42 x 28 x 22 5.08 mm (0.2") 30.5 mm (1.2")	
Rec. PCB hole	diameter:	1.5 mm	
Weight:		81 g	
Static resistance	e of each primary:	150 Ω	
Static resistance	e of each secondary:	150 Ω	
Distortion	(primaries connected in series,	+ 23 dBU 0.1% @ 30 Hz	
	source impedance 600Ω):	+ 26 dBU < 1 % @ 30 Hz	
Self resonance	esonance point: > 150 kHz		
Suggested load for best square wave response, serial-serial		40k // 7k + 400 pF	
connection.			
Frequency resp	ponse (serial connection, source $1k\Omega$,	10 Hz 100 kHz +/- 1.0 dB	
load 40) k Ω in parallel with 7k + 400pF):		
Phase splitting	balance (connection 2:1+1. Source $1k\Omega$,	>55dB, 10Hz - 50kHz	
load (2	$0k\Omega + 20k\Omega$) in parallel with $7k + 400pF$):,		
Phase response	e (deviation from linear phase)	$20 \text{ Hz} - 20 \text{ Hz}, < 2^{\circ}$	
(source	e 600 ohm, load 10k (Audio Precision))		
Isolation betwe	en windings/ between windings and shield:	3 kV / 1.5 kV	

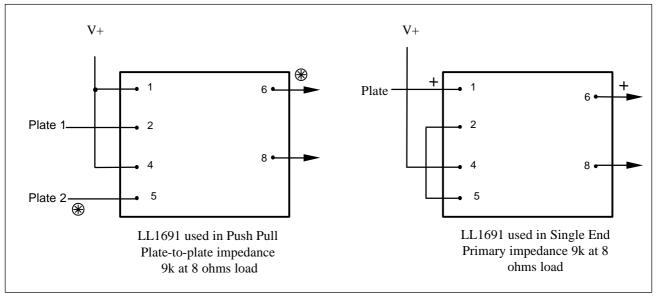
Connection alternatives and suggested applications:




Tibeliusgatan 7	
S-761 50 NORRTÄLJE	-
SWEDEN	

Tube amplifier output transformer LL1691 9k : 8 ohms (for 845 tubes)

The LL1691 is a dual coil C-core tube amplifier output transformer for 9k: 8 ohms impedance ratio available in PP and SE versions.


The coil is wound using our high internal isolation technique with isolation foil between each copper layer. The core is an audio C-core of our own production.

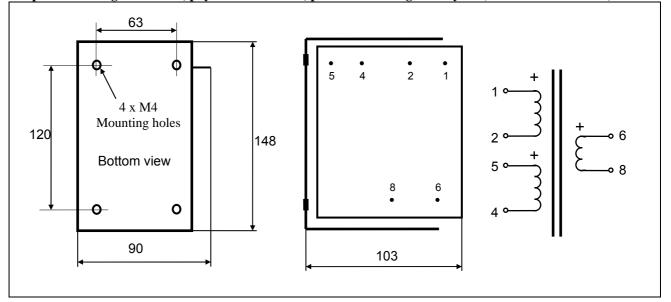
Weight:	4.6 kg
Static resistance of each primary:	112 Ω
Static resistance of secondary:	0.3 Ω
Isolation between windings / between windings and core:	4 kV / 2 kV
Max DC current through any primary winding (10W heat dissip):	210mA

	LL1691/PP	LL1691/70mA
Primary inductance (approx.)		75H
Max primary signal	1220V R.M.S. @ 30 Hz	530V R.M.S. @ 30 Hz
Max output power @ 30 Hz	160W (8Ω spkr)	30W (8Ω spkr)

Suggested use:

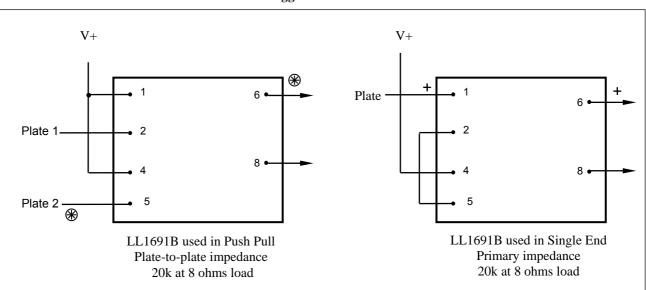
Tibeliusgatan 7
S-761 50 NORRTÄLJE
SWEDEN

25 + 25 : 1


Tube amplifier output transformer LL1691B 20k : 8 ohms

The LL1691B is a dual coil C-core tube amplifier output transformer for 20k: 8 ohms impedance ratio, Based on the LL1691 design. The LL1691B is available in PP and SE versions.

The coil is wound using our high internal isolation technique with isolation foil between each individual layer of copper wire. The core is an audio C-core of our own production.

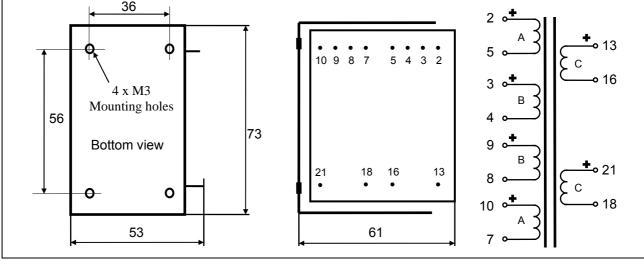

Turns ratio

Simplified winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

Weight:	4.6 kg
Static resistance of each primary:	260Ω
Static resistance of secondary:	0.3 Ω
Isolation between windings / between windings and core:	4 kV / 2 kV
Max DC current through any primary winding (10W heat dissip):	140mA

	LL1691B/PP	LL1691B/70mA
Primary inductance (approx.)		110 H
Max primary signal	1830V R.M.S. @ 30 Hz	790V R.M.S. @ 30 Hz
Max output power @ 30 Hz	160W (8Ω spkr)	30W (8Ω spkr)

Suggested use:


Tube Amplifier Interstage Transformer / Line Output Transformer LL1692A

LL1692A is an interstage transformer for tube amplifiers, impedance-wise placed between LL1660 and LL1671. LL1692A is available with various core air gaps optimised for PP or SE drives.

The transformer is wound with a special low capacitance winding technique to achieve best high frequency performance. It has a special high flux, low distortion audio C-core of our own production.

The Push-Pull version is assembled with a small core air gap to allow for some DC current unbalance. For the S.E. versions of the LL1692A, the core air gap is chosen such that the denoted DC current (18mA for a LL1692A/18mA) generates a no signal core flux density of 0.9 Tesla when used with all primaries in series. This leaves a flux density swing of approx. 0.7 T for the signal.

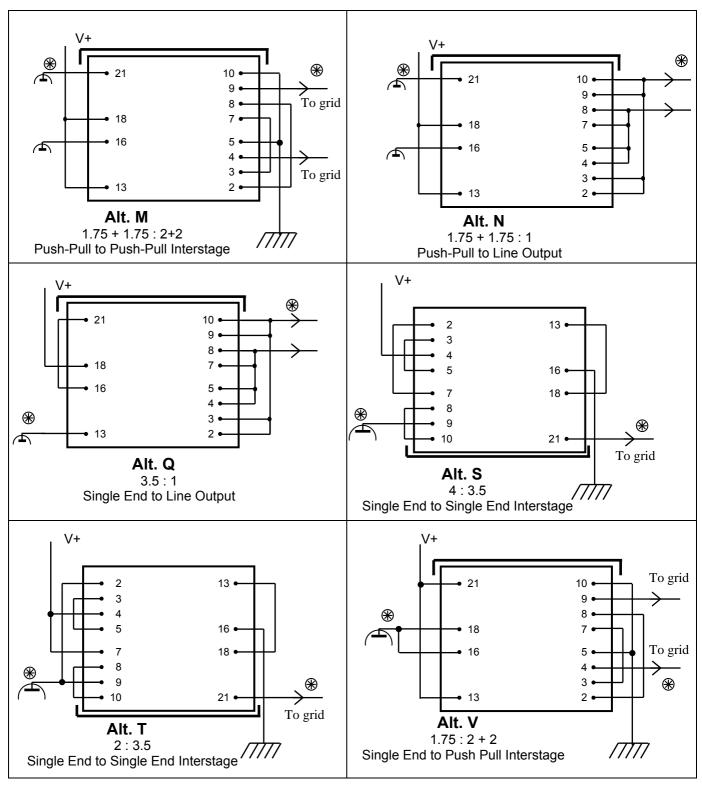
Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

Weight	Turns ratio	Static resistance, winding A	Static resistance, winding B	Static resistance, winding C
0.75 Kg	1+1+1+1 : 1.75+1.75	220 Ω	175 Ω [°]	345 Ω

Max. DC current through any single section:

70 mA

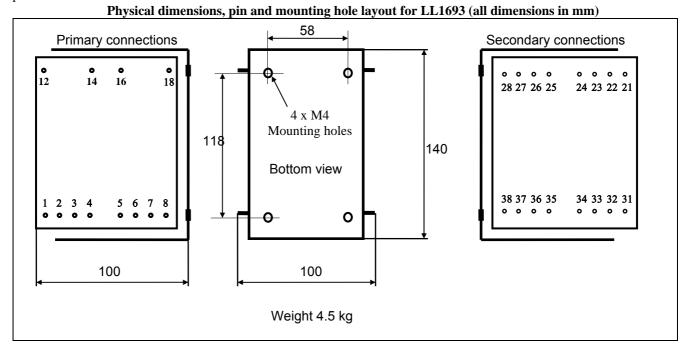
Туре	LL1692A PP	LL1692A PP	LL1692A/18m	LL1692A/18m	
			Α	Α	
Connection	Alt M	Alt N	Alt Q	Alt S	
	PP to PP Interst.	PP Line output	SE Line Output	SE to SE Interst.	
	1.75+1.75 : 2+2	1.75 + 1.75 : 1	3.5:1	4:3.5	
Primary DC current for	-	-	21 mA	18 mA	
0.9 Tesla					
Primary Inductance	210H	210H	95H	125H	
Freq. Response (+/-1dB)	20 Hz – 45 kHz	20 Hz – 50 kHz	10 Hz – 55 kHz	30Hz - 30 kHz	
@ source impedance (*)	10kΩ	10kΩ	2 kΩ	10 kΩ	
Secondaries open					
Max output	2 x 240V r.m.s.	120V r.m.s.	50 V r.m.s.	175 V r.m.s.	
voltage @ 30 Hz					


_
Α
\mathbf{D}
b
ř
i
\mathbf{C}
a
t
ī
Ċ
ĸ
S

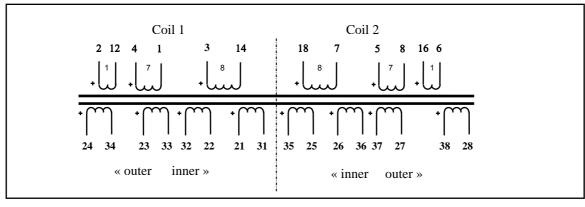
voltage @ 30 Hz		
Туре	LL1692A/18m	LL1692A/18mA
	A	
Connection	Alt T	Alt V
	SE to SE Interst.	SE to PP Interst.
	2:3.5	1.75:2+2
Primary DC current for	36 mA	41 mA
0.9 Tesla		
Primary Inductance	35H	24H
Freq. Response (+/-1dB)	40 Hz - 30 kHz	50 Hz - 30 kHz
@ source impedance (*)	3 kΩ	3 kΩ
Secondaries open		
Max output	175 V r.m.s.	190 V r.m.s.
voltage @ 30 Hz		

(*) The source impedances used in the tables indicate a recommended upper limit, unless the specified LF frequency response can be compromised. At lower source impedance, bass will improve but resonance peaking might occur. Peaking can be reduced using secondary load resistors or RC networks.

Tube Amplifier Interstage Transformer / Line Output Transformer LL1692A Connection Alternatives



Hase Indicator



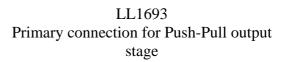
Tube Amplifier Output Transformer <u>LL1693</u>

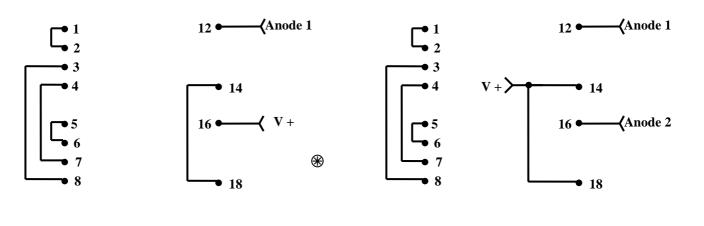
The LL1693 is a high power tube output transformer primarily for low impedance high power tubes. The transformer is built up from two coils, each consisting of 5 sections. The core is a high quality grain oriented silicon steel C-core from our own production.

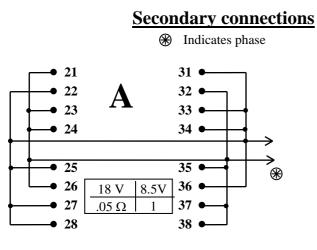
Winding schematics:

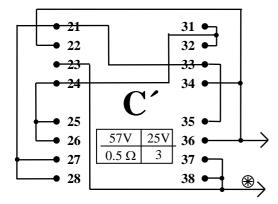
	LI	L1693	
Turns ratio (approx)	8+7+1+8+7+2	1 : 1+1+1+1+1+1+1	
Static resistance of primary (all in series)	$60 \Omega (2 x 15\Omega + 2 x 12\Omega + 2 x 3\Omega)$		
Static resistance of inner/outer secondary winding	0.4Ω / 0.5Ω		
Primary leakage inductance (all in series)	To be measured		
Max recommended primary DC current (heat dissipation 12W)	450 mA		
Max. primary <u>signal</u> voltage r.m.s. at 30 Hz (all in series)	Push-Pull 530V	Single End 235V	

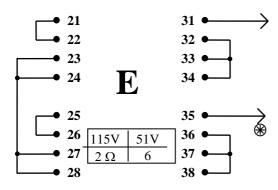
Electrical characteristics

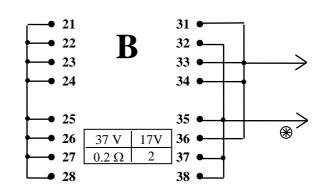

Primary Load Impedance, Max power and power loss.					
	Sec. connection for 4/8/16 Ω				
	(See next page)				
	-/B/C B/C/D C/D/E				
	Primary Load Impedance				
	(transformer copper resistance included)				
LL1693	2.3 kΩ	1 kΩ	$600 \ \Omega$		
	Power and Loss				
Max. Power, P-P at 30 Hz	180W 360W 700W				
Max. Power, S.E. at 30 Hz	35W 70W 140W				

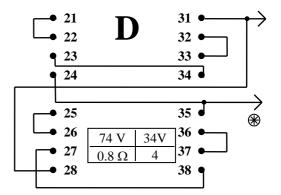

Primary Load Impedance, Max power and power loss.

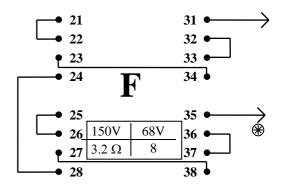

Primary DC Current Core Air-gap and Primary inductance


	LL1693/PP	LL1693/230mA
Core Airgap	25 μ	450 μ
(delta/2)		
Single end standing current for 0.9 Tesla		230mA
(recommended operating point)		
Primary inductance	150 H	16H

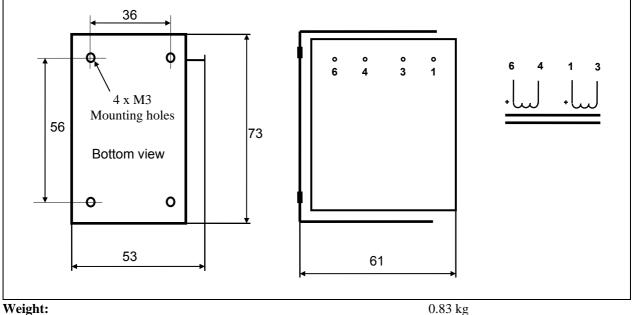

LL1693 Primary connection for Single-End output stage



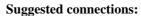


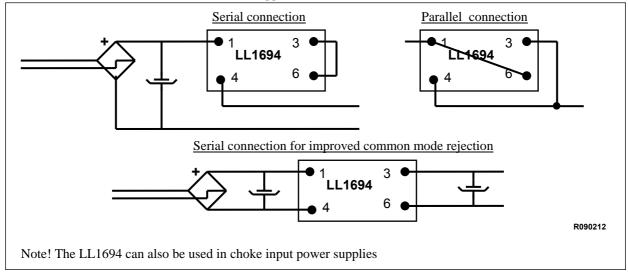


Max secondary Vol	tage RMS @ 30 Hz
Push-Pull	Single Ended
Copper resistance	Windings in series



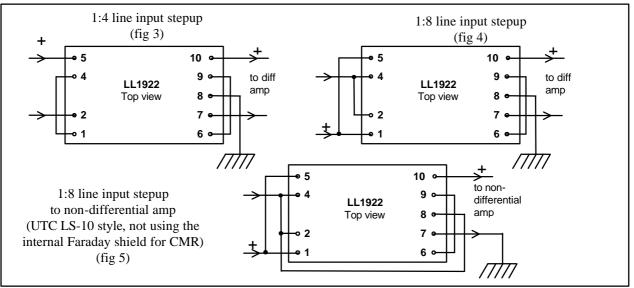
Filament Current Choke LL1694


The LL1694 is a 2 coils choke for tube/valve filament current filtering. The coil is wound using our standard high internal isolation technique with isolation foil between each copper layer. The core is an audio C-core of our own production.


Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

Static resistance of each winding: Isolation between windings / between windings and core: 0.83 kg 0.9 Ω 4 kV / 2 kV

	Coils in series			Coils in parallel		
Туре	Approx. Inductance	Recommended DC current (1.25 T)	Saturating current (2.0 T)	Approx. Inductance	Recommended DC current (1.25 T)	Saturating current (2.0 T)
LL1694 / 1.5A	0.16 H	1.5 A	2.4 A	0.04 H	3 A	4.8 A
Max. ripple voltage at rec. DC current (Ripple voltage is approx. 0.42 x input voltage)	50 V rms / 100 Hz				25 V rms / 100 Hz	



High Level Stepup Line Input Transformer LL1922

LL1922 is a high-level input transformer similar to the UTC LS-10. Thus it is designed for step-up input from 600 ohm sources. To reach the LS-10 freq. response in 1:8 applications with nondifferential amplifier input, the internal Faraday shield must be tied to one of the source lines (the UTC LS-10 does not have any Faraday shield). The two coils structure results in a high immunity to external magnetic fields from e.g. power supplies and motors. Primary and secondary windings are separated by electrostatic shields. The core is a high permeability mu metal core. The transformer is housed in a mu-metal can.

Turns ratio: 1+1:4+4 Pin layout (viewed from component side) and winding schematics:				
• 5 • 4 Top view • 2 • 1	10 ° 9 ° 8 ° 7 ° 6 °	$1 \circ \begin{array}{c} + \\ 2 \circ \begin{array}{c} - \\ - \\ 5 \circ \begin{array}{c} + \\ + \\ 4 \circ \end{array} \end{array} + \begin{array}{c} + \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$		
Spacing between pin Spacing between row Rec. PCB hole diame Weight: Static resistance of e Static resistance of e Distortion (primaries	vs of pins eter: ach primary:	$\begin{array}{c} 47 \ \text{x} \ 28 \ \text{x} \ 24 \\ 5.08 \ \text{mm} \ (0.2") \\ 35.56 \ \text{mm} \ (1.4") \\ 1.5 \ \text{mm} \\ 115 \ \text{g} \\ 60\Omega \\ 730\Omega \\ + \ 21 \ \text{dBU} \ 0.1\% \ @ \ 50 \ \text{Hz} \\ + \ 26 \ \text{dBU} \ < 1 \ \% \ @ \ 50 \ \text{Hz} \end{array}$		
Distortion (printimpedance 600Ω , load	rce $+ 11 \text{ dBU } 0.1\% @ 50 \text{ Hz} $ + 19 dBU <1 % @ 50 Hz			
Frequency response (source 600Ω , load 47 k Ω , Connected 1:4 (fig 3), primary level +10dBU10 Hz -50 kHz +/- 1.0Connected 1:8 (fig 4), primary level +10dBU10 Hz -30 kHz +/- 1.0Connected 1:8 (fig 5), primary level +10dBU10 Hz -30 kHz +/- 1.0Isolation between windings/ between windings and shield:4 kV / 2 kV				

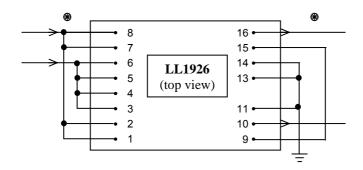
Connection alternatives and suggested applications:

Audio Transformer LL1926

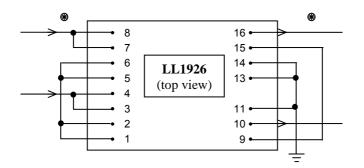
LL1926 is an audio transformer with a variety of connection alternatives. It is designed for microphone input (step-up) applications, but can also be used as a line input step-down transformer.

The transformer consists of two coils, each with one high impedance winding surrounded by two low impedance windings, with Faraday shields between all sections. The LL1926 has a mu-metal lamination core and is housed in a mu-metal can.

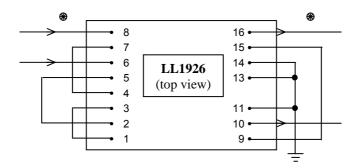
The LL1926 is pin compatible with the amorphous core transformer LL1550, but LL1926 takes up more board space due to the shape of the mu metal laminations.


Turns ratio: Dims: (Length x Width x Heigh Pin Layout (viewed from <u>comp</u>		1 + 1 + 1 + 1 : 4 + 4 37 x 23 x 12 s schematics:
	shell shee) and willang	1 <u>+</u>
o 8 16 o o 7 15 o o 6 14 o o 5 LL1926 13 o o 4 (top view) 11 o o 2 10 o 0 o 1 9 o 0		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		5 Can + Core 13
Spacing between pins: Spacing between rows of pins: Weight: Rec. PCB hole diameter Static resistance of windings:	2-3 or 6-7 1-4 or 5-8	2.54 mm (0.1") 22.86 mm (0.9") 46 g 1.3 mm 30 Ω 45 Ω
	9-10 or 15-16	290 Ω
Self resonance point:		> 100 kHz
Recommended load for best squ (Connection alternative "C"):	are-wave response	$6.7 \mathrm{k}\Omega + 470 \mathrm{pF}$
Frequency response ("C", source	the 600 Ω , load 20 k Ω):	10 Hz - 60 kHz +/- 1.0 dB @ 0 dBU
Core:		Mu-metal lamination
Isolation between windings / be	tween windings and shie	elds: $3 \text{ kV} / 1.5 \text{ kV}$

Data at different connection alternatives:


Connection	Turns	Copper	Suggested Use	Max input signal level	THD < 0.2% @50 Hz
Alternatives	ratio	Resistance		(1 % THD @ 50Hz)/	primary level /
		Prim/sec		source impedance	source impedance
Α	1:8	10Ω / 580Ω	Microphone input,	$+7~dBU~/~40~\Omega$	$+2~dBU~/~40~\Omega$
			50 - 200 ohm		
В	1:4	$40~\Omega$ / $580~\Omega$	Microphone input	+13 dBU / 150 Ω	$+8~dBU$ / 150 Ω
			200 ohms		
С	1:2	$150~\Omega$ / $580~\Omega$	Mic. or line input	$+19~dBU$ / $600~\Omega$	$+13~dBU$ / $600~\Omega$

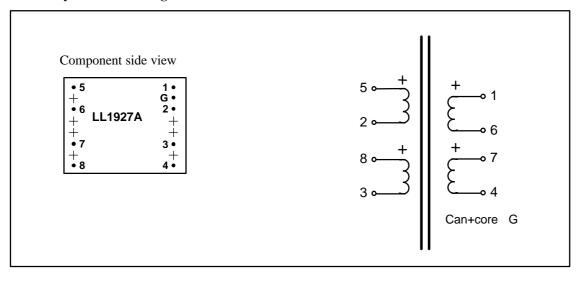
R 121221 PL


LL1926 connection alternatives

A. Turns ratio 1:8 (or 8:1 if used "backwards")

B. Turns ratio 1:4 (or 4:1)

C. Turns ratio 1:2 (or 2:1)


Ribbon Microphone Transformer LL1927A

(Difference between LL1927 and LL1927A is pinout)

The LL1927A is a very high turns ratio transformers for active ribbon microphones. The transformer has an uncut amorphous strip core and is built up from two coils of each four sections for low leakage inductance.


Turns	ratio:
-------	--------

Dims: (Length x Width x Height above PCB (mm)) Pin Layout and Windings Schematics: 1 + 1 : 55 + 55 30 x 22.5 x 14.5

Spacing between pin positions:	2.54 mm (0.1")
Spacing between rows of pins:	22.86 mm (0.9")
Weight:	27 g
Rec. PCB hole diameter:	1.5 mm
Housing:	Mu metal
Core:	High mu amorphous strip core
Static resistance of <u>each</u> primary (average):	0.05 Ω
Static resistance of <u>each</u> secondary:	182 Ω
Frequency response (Source 0.3Ω , load $10k\Omega$.	
Connection 1 : 110. Secondary signal level 0dBU)	10Hz – 70kHz +/- 1dB

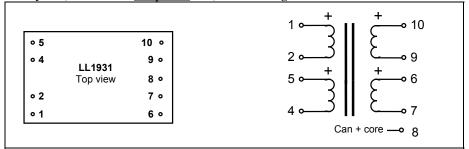
Audio transformer for tube preamp line output LL1930

LL1930 is designed to be a line output transformer for tube preamp parafeed output applications. The core is a high permeability mu metal core. The transformer has no internal Faraday shield or magnetic shield housing.

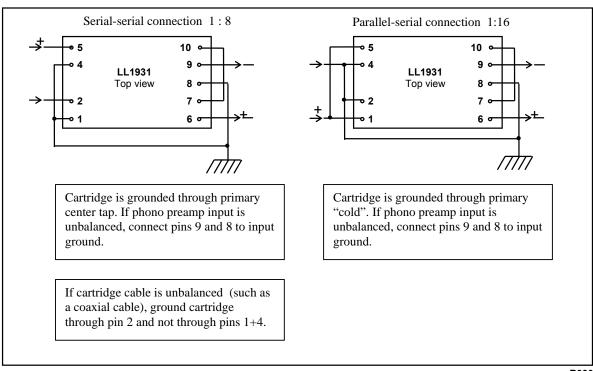
ns ratio: l ayout (viewed from	n <u>component</u> side) a	5.8 + 5.8 : 1 + and winding schematics:
• 5 • 4 • 3 • 3 • 2 • 1	10 ° 9 ° 7 ° 6 °	$5 \stackrel{+}{\circ} \stackrel{+}{\circ} \stackrel{+}{\circ} 10$ $4 \stackrel{+}{\circ} \stackrel{+}{\circ} 10$ $1 \stackrel{+}{\circ} \stackrel{+}{\circ} 6$ $2 \stackrel{-}{\circ} Core$

Dimensions (L x W x H above PCB, in mm)	47 x 28 x 23
Spacing between pins	5.08 mm (0.2")
Spacing between rows of pins	35.56 mm (1.4")
Rec. PCB hole diameter:	1.5 mm
Weight:	105 g
Static resistance of each primary (pins 1-2, 4-5):	610Ω
Static resistance of each secondary (pins 6-7, 9-10):	16Ω
Distortion at 30 dBU primary signal. Source impedance	< 0.1% at 50Hz
4.5k. Primaries connected in series.	< 1% at 25Hz
Frequency response. Connection and signal level as above.	20 Hz - 30 kHz < +/- 0.1 dB
Secondary load 10k.	
Isolation between windings/ between windings and core:	4 kV / 2 kV

R090828


Amorphous Core Moving Coil Input Transformer LL1931

LL1931 is a high performance moving coil step-up transformer. The transformer combines our unique uncut amorphous cobalt core and our dual coil structure with Cardas high purity copper wire in an oversized design. The objective is to provide the best possible MC transformer, cost-no-object. The dual-coil structure greatly improves immunity to external magnetic fields from power supplies, motors etc.. The transformer is housed in a mu-metal can.


Turns ratio:

1 + 1 : 8 + 8

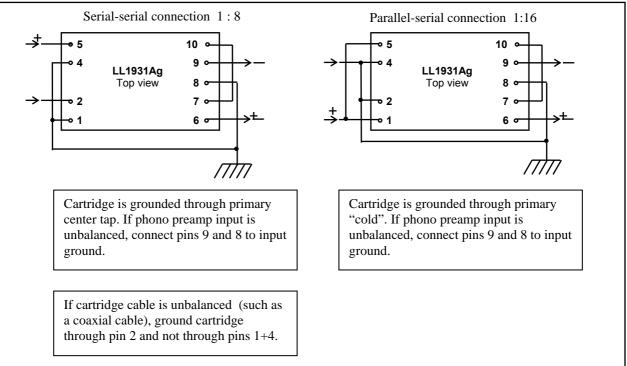
Pin layout (viewed from <u>component</u> side) and winding schematics:

Dimensions (L x W x H above PCB, in mm)	43 x 28 x 22
Spacing between pins	5.08 mm (0.2")
Spacing between rows of pins	30.5 mm (1.2")
Rec. PCB hole diameter:	1.5 mm
Weight:	80 g
Static resistance of each primary:	1.8 Ω
Static resistance of each secondary:	105 Ω
Frequency response (serial connection, source 50 Ω ,	10 Hz 100 kHz +/- 1.0 dB
no load / secondaries open):	
Isolation between windings/ between windings and core:	3 kV / 1.5 kV

Connection alternatives:

R090627

Silver Wire Amorphous Core Moving Coil Input Transformer LL1931Ag

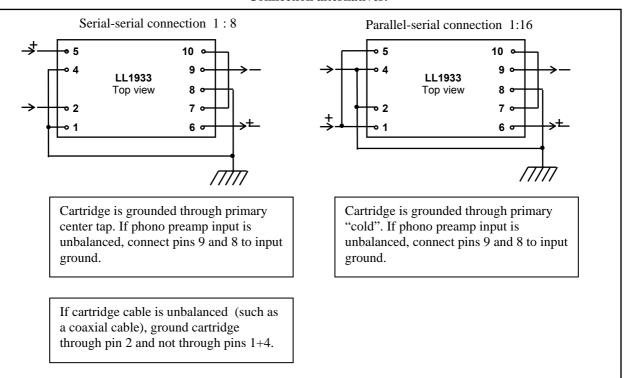

LL1931Ag is a silver wire version of our high performance moving coil step-up transformer LL1931. The LL1931Ag combines our unique uncut amorphous cobalt core and our dual coil structure with high purity (99.99%) silver wire in an oversized design. The objective is to provide the best possible MC transformer, cost-no-object. The dual-coil structure greatly improves immunity to external magnetic fields from power supplies, motors etc.. The transformer is housed in a mu-metal housing.

Turns ratio: Pin layout (viewed from <u>component</u> side) and windin	1 + 1 : 8 + 8 g schematics:	
	$1 \stackrel{+}{\longrightarrow} \\ 2 \stackrel{+}{\longrightarrow} \\ 5 \stackrel{+}{\longrightarrow} \\ 4 \stackrel{+}{\longrightarrow} \\ Can + core \stackrel{-}{\longrightarrow} \\ 8 \end{bmatrix} $	
Dimensions(L x W x H above PCB, in mm)Spacing between pinsSpacing between rows of pinsRec. PCB hole diameter:Weight:Static resistance of each primary:Static resistance of each secondary:	43 x 28 x 22 5.08 mm (0.2") 30.5 mm (1.2") 1.5 mm 80 g 1.5 Ω 95 Ω	
Frequency response (serial connection, source 50 Ω ,	10 Hz 100 kHz +/- 1.0 dB	

no load / secondaries open):

Isolation between windings/ between windings and core:

3 kV / 1.5 kV **Connection alternatives:** Serial-serial connection 1:8



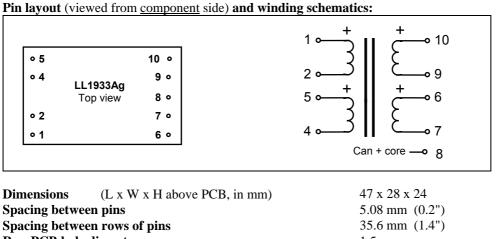
Moving Coil Input Transformer LL1933

LL1933 is a high performance moving coil step-up transformer. The transformer combines our dual coil structure with Cardas high purity copper wire in an oversized design. The objective with LL1933 is to provide an alternative for the successful amorphous core LL1931 for those who prefer a low distortion, linear magnetization curve nickel lamination core transformer. The dual-coil structure greatly improves immunity to external magnetic fields from power supplies, motors etc. The transformer is housed in a mu-metal can.

Can + core —• 8	• 5 10 • 4 LL1933 Top view 8 • 2 7 • 1 6	$2 \xrightarrow{2} \xrightarrow{+} \\ 5 \xrightarrow{+} \\ 4 \xrightarrow{-} \\ Can + core \xrightarrow{-} 8$
-----------------	--	---

Spacing between pins	5.08 mm (0.2)
Spacing between rows of pins	35.6 mm (1.4")
Rec. PCB hole diameter:	1.5 mm
Weight:	115 g
Static resistance of each primary:	1.5 Ω
Static resistance of each secondary:	85 Ω
Frequency response (serial connection, source 50 Ω ,	8 Hz 100 kHz +/- 1.0 dB
no load / secondaries open):	
Isolation between windings/ between windings and core:	3 kV / 1.5 kV

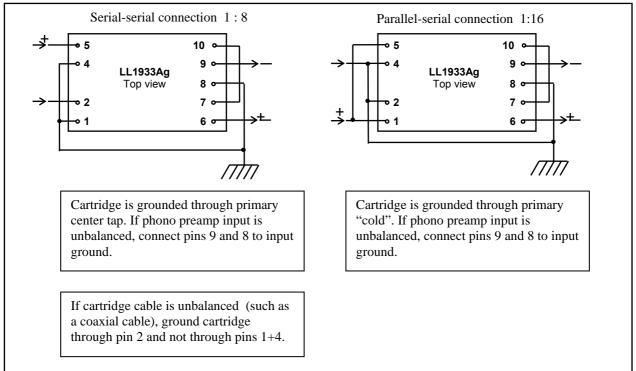
Connection alternatives:



Silver Wire Moving Coil Input Transformer LL1933Ag

LL1933Ag is a silver wire version of our high performance moving coil step-up transformer LL1933. The LL1931Ag combines our dual coil structure with high purity (99.99%) silver wire in an oversized design. The core is a mu metal lamination core for low distortion and for a linear magnetization curve. The dual-coil structure greatly improves immunity to external magnetic fields from power supplies, motors etc. The transformer is housed in a mu-metal housing.

Turns ratio:

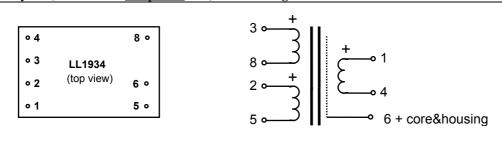

1 + 1 : 8 + 8

Spacing between rows of pins **Rec. PCB hole diameter:** 1.5 mm Weight: 115 g Static resistance of each primary: 1.3 Ω Static resistance of each secondary: 80Ω **Frequency response** (serial connection, source 50 Ω , 8 Hz -- 100 kHz +/- 1.0 dB no load / secondaries open): 3 kV / 1.5 kV

Isolation between windings/ between windings and core:

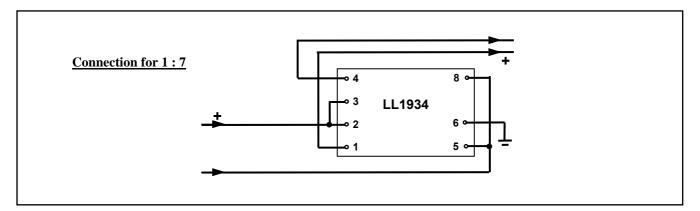
Connection alternatives:

Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN


Microphone Transformer LL1934

The LL1934 is small size microphone input transformer, with a high permeability mu-metal core and two two-section coils with internal Faraday shields. The transformer is housed in a mu-metal can.

Turns ratio:


1 + 1 : 7

Pin layout (viewed from <u>component</u> side) and winding schematics:

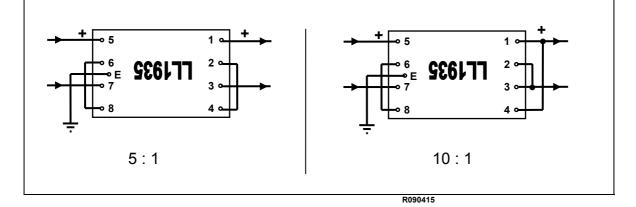
Dimensions	Spacing	Spacing between	Recommended PCB	Weight
Max. Length x Width x	between pins	rows of pins	hole diameter	
Height above PCB (mm)				
28 x 17.5 x 12	3.81 mm(0.15")	20.32 mm (0.8")	1.5 mm	18 g

	LL1934
Turns ratio	1 + 1 : 7
Static resistance of each primary	35 Ω
Static resistance of secondary	1 kΩ
Primary level at 0.2 % THD, 50 Hz signal	-10 dBU
Primaries connected in parallel, source impedance 150Ω	
Primary level at 1 % THD, 50 Hz signal	-2 dBU
Primaries connected in parallel, source impedance 150Ω	
Frequency response +/- 1.0 dB	15Hz – 60kHz
Primary signal level -10 dBU, source 200 Ω	
Primaries in parallel, secondary termination 10k	
Isolation between windings / between windings and shield	3 kV / 1.5 kV

R081201

Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN International Domestic Phone +46 - 176 13930 0176-13930 Fax +46 - 176 13935 0176-13935

DI Transformer LL1935

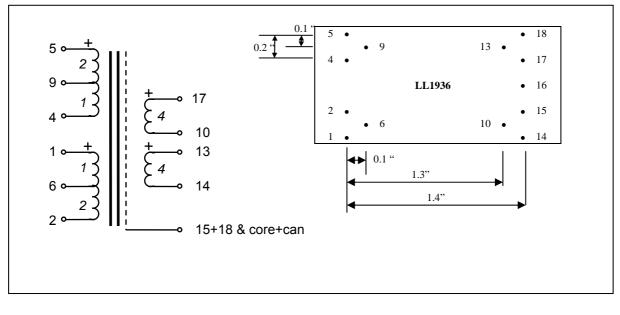

LL1935 is a transformer designed for DI (Direct Input) applications, matching high impedance guitar pickups to low impedance microphone preamp inputs, but is also ideal for 1:10 microphone input applications. The transformer consists of two coils, each with one primary and one secondary winding separated by an electrostatic shield, and a high permeability mu-metal core. The high impedance windings are wound using a special low capacitance winding technique. The transformer is encapsulated in a mu-metal case for magnetic shielding.

For best performance, the high impedance side of the transformer (5 + 5) should be connected in series.

Turns ratio: Dims (Length x Width x Height a Pin layout (viewed from <u>componen</u>	
•4 • * 3 • 2 LL1935 E 6 6 • 1 5 •	$\begin{array}{c}4 & \circ & + \\3 & \circ & + \\1 & \circ & + \\2 & \circ & \end{array} \end{array} \qquad \qquad$

Spacing between pins:	5.08 mm (0.2")
Spacing between rows of pins:	27.94 mm (1.1")
Offset of earth pin from adjacent row:	2.54 mm (0.1")
Weight:	46 g
Recommended PCB hole diameter:	1.5 mm
Static resistance of each primary (pins 5-6 and 7-8):	650 Ω
Static resistance of each secondary (pins 1-2 and 3-4):	17 Ω
Frequency response (reference 1.0 kHz)	
10:1, source 100 k Ω , secondary open:	20 Hz - 20 kHz + 0 / -3 dB
10:1, source 100 k Ω , load 1 k Ω	10 Hz – 45 kHz +0 / -2 dB
1:10, source 200 Ω , secondary open	10 Hz – 80 kHz +/- 1dB
Distortion	-5 dBU input level, +14 dBU output level
For practical reasons measured in 1:10 configuration.	< 0.1% THD @ 50 Hz
Source 150Ω, load 10k (Audio Precision portable)	+7 dBU input level, +26 dBU output level
	<1% THD @ 50 Hz
Self resonance point :	None detected in above configurations
Isolation between windings/ between windings and	4 kV / 2 kV
shield	

Connection alternatives (Component side view):


Microphone Input Transformer LL1936

The LL1936 is a microphone input transformer which can be connected for microphones with different impedance. It is built using our dual coil structure, with a mu metal lamination core. The transformer is magnetically shielded by a mu metal housing.

Turns ratio:

(2+1) + (2+1) : 4 + 4 48 x 29 x 20

Dims (Length x Width x Height above PCB (mm)): Pin layout (viewed from <u>component</u> side) and winding schematics:

Weight: Rec. PCB hole diameter:

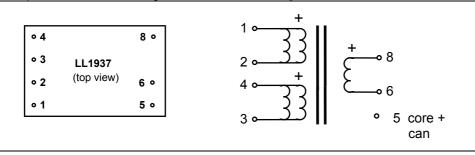
90 g 1.5 mm

Secondary connection	Out+	Out-	Connect (= Output centertap)
for 1200 Ω real or virtual	17	14	10 + 13
impedance			

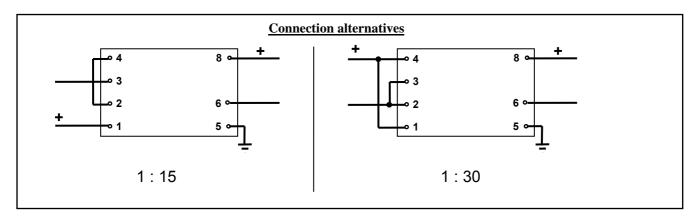
Input impedance (1200 ohm load)	Turns ratio	In+	In-	Connect	Faraday shield and housing
75 Ω	2:8	5 + 6	9 + 2		15 + 18
150 Ω	3:8	5 + 1	4 + 2		15 + 18
300 Ω	4:8	5	2	9+6	15 + 18
600Ω	6:8	5	2	4 + 1	15 + 18

Static resistance of each primary 1 (9-4 or 1-6):	13 Ω
Static resistance of each primary 2 (5-9 or 6-2):	24 Ω
Static resistance of each secondary:	50 Ω
Distortion	0.1% THD @10dBU, 50Hz
Source 600 Ω , primary connection for 600 Ω	1% THD @ 20dBU, 50Hz
Frequency response:	10Hz – 100kHz +/- 1dB rel. 1kHz
Balanced input, 0 dBU signal level, source 600Ω , load $10k\Omega$	
Isolation between primary and secondary windings/	4kV / 2kV
between windings and shield:	

Tibeliusgatan 7
S-761 50 NORRTÄLJE
SWEDEN


Moving Coil Transformer LL1937

The LL1937 is small size transformer for impedance matching between MC cartridges and phono preamps. The LL1937 consists of two three-section coils and a high permeability mu-metal core. The transformer is housed in a mu-metal can.


1 + 1 : 30

Pin layout (viewed from <u>component</u> side) and winding schematics:

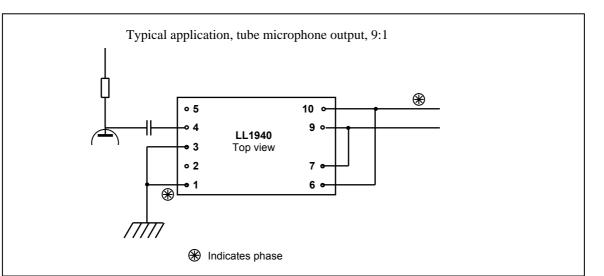
Dimensions	Spacing	Spacing between	Recommended PCB	Weight
Max. Length x Width x	between pins	rows of pins	hole diameter	
Height above PCB (mm)				
28 x 17.5 x 12	3.81 mm(0.15")	20.32 mm (0.8")	1.5 mm	18 g

	LL1937
Turns ratio	1 + 1 : 30
Static resistance of each primary	1.7 Ω
Static resistance of secondary	660 Ω
Isolation between windings / between windings and shield	3 kV / 1.5 kV

R100222

Application hint: As the LL1937 does not have Faraday shields, both sides of the transformer should have a common ground reference.

Tube microphone output transformer LL1940


LL1940 is a high turns ratio transformer designed for tube microphones. Conventionally, this type of transformer has a mu metal lamination core for minimum distortion and maximum transparency. For the LL1940 we have chosen a silicon iron C-core (with approx 10 times as high distortion compared to mu metal) to add more "transformer character" to the signal. The transformer has an internal Faraday shield for optimal output balance, but no housing.

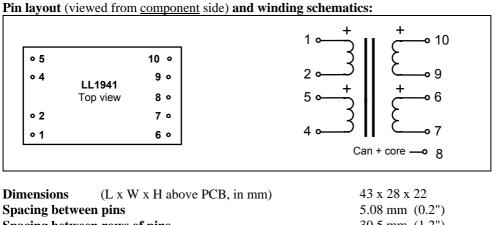
Turns ratio:

9:1+1 Pin layout (viewed from component side) and winding schematics:

° 5		10 •	$+ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
o 4	LL1940	9 0	
• 3	Top view		⁹ }
• 2		7 o	
o 1		6 •	i

Dimensions (L x W x H above PCB, in mm)	31 x 25 x 16
Spacing between pins	3.81 mm (0.15")
Spacing between rows of pins	22.86 mm (0.9")
Rec. PCB hole diameter:	1.5 mm
Weight:	35 g
Static resistance of primary (pins 1-4):	1.5 kΩ
Static resistance of each secondary (pins 6-7, 9-10):	34Ω
Max primary signal level.	18V RMS at 20Hz
	45V RMS at 50 Hz
Primary no load impedance	30 kΩ at 50 Hz
Frequency response. Source impedance 10k. Load 600 ohms	20 Hz - 50 kHz + 0 / - 3 dB
Secondaries connected in parallel	40Hz - 30 kHz + 0 / -1 dB
Frequency response. Source impedance 50k. Load 600 ohms	50 Hz - 40 kHz + 0 / - 3 dB
Secondaries connected in parallel	
Distortion. Source impedance 10k.	Approx 1% THD at
	50Hz, 20dBU primary level.
Isolation between windings/ between windings and core:	4 kV / 2 kV

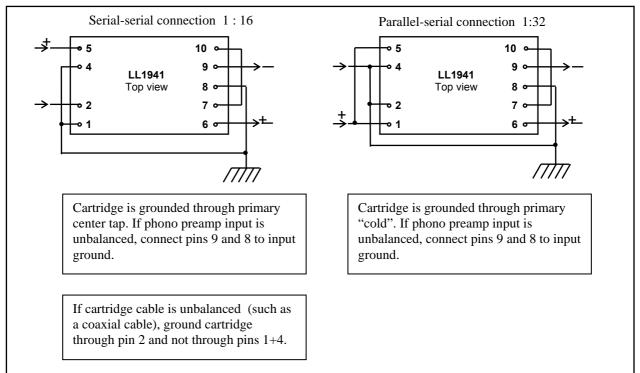
R110923



Amorphous Core Moving Coil Input Transformer LL1941

LL1941 is a high turns ratio version of our LL1931 moving coil step-up transformer. The LL1941 transformer combines our unique uncut amorphous cobalt core and our dual coil structure with Cardas high purity copper wire in an oversized design. The objective is to provide the best possible MC transformer, cost-no-object, for low output MC cartridges. The dual-coil structure greatly improves immunity to external magnetic fields from power supplies, motors etc.. The transformer is housed in a mu-metal can.

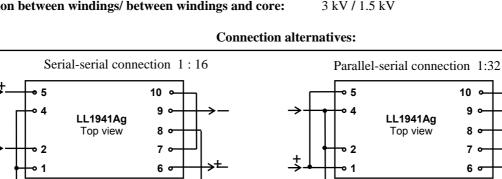
Turns ratio:


1 + 1 : 16 + 16

Spacing between rows of pins 30.5 mm (1.2") **Rec. PCB hole diameter:** 1.5 mm Weight: 90 g Static resistance of each primary: 0.8Ω Static resistance of each secondary: 105Ω **Frequency response** (serial connection, source 10Ω , 10 Hz -- 100 kHz +/- 1.0 dB no load / secondaries open): 3 kV / 1.5 kV

Isolation between windings/ between windings and core:

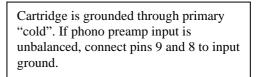
Connection alternatives:


Silver Wire Amorphous Core Moving Coil Input Transformer LL1941Ag

LL1941Ag is a silver wire version of our high turn's ratio, high performance moving coil step-up transformer LL1941. The LL1941Ag combines our unique uncut amorphous cobalt core and our dual coil structure with high purity (99.99%) silver wire in an oversized design. The objective is to provide the best possible MC transformer, cost-noobject, for low output MC cartridges. The dual-coil structure greatly improves immunity to external magnetic fields from power supplies, motors etc.. The transformer is housed in a mu-metal housing.

• 5	10 •	
° 4	9 0	و سے ال کے 2
	LL1941Ag Top view 8 •	5 • + + 6
• 2	7 •	↓ ξ
• 1	6 •	4 • · · · · · · · · · · · · · · · · · ·
		Can + core — 8

Dimensions (L x W x H above PCB, in mm)	43 x 28 x 22
Spacing between pins	5.08 mm (0.2")
Spacing between rows of pins	30.5 mm (1.2")
Rec. PCB hole diameter:	1.5 mm
Weight:	90 g
Static resistance of each primary:	0.5 Ω
Static resistance of each secondary:	95 Ω
Frequency response (serial connection, source 10Ω ,	10 Hz 100 kHz +/- 1.0 dB
no load / secondaries open):	
Isolation between windings/between windings and some	$2 I_{\rm eV} / 1 = 5 I_{\rm eV}$

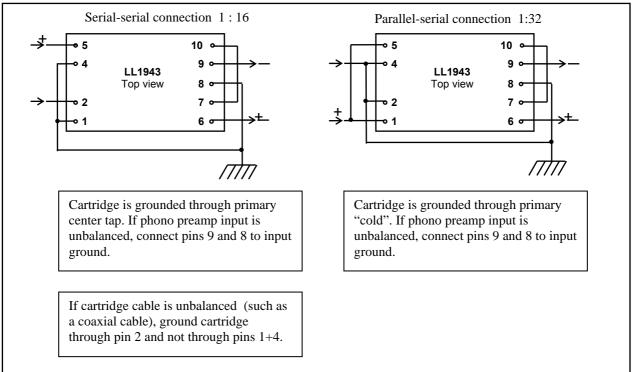

Isolation between windings/ between windings and core:

Cartridge is grounded through primary center tap. If phono preamp input is unbalanced, connect pins 9 and 8 to input ground.

/////

If cartridge cable is unbalanced (such as a coaxial cable), ground cartridge through pin 2 and not through pins 1+4.

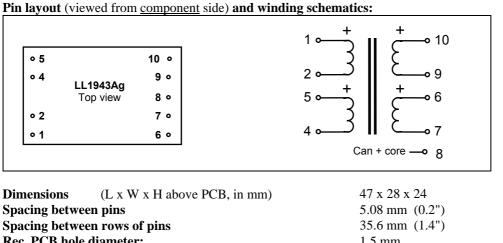

.0 dB


Moving Coil Input Transformer LL1943

LL1943 is a high turns ratio of our LL1933 high performance moving coil step-up transformer. The LL1943 transformer combines our dual coil structure with Cardas high purity copper wire in an oversized design. The objective with LL1943 is to provide an alternative for the amorphous core LL1941 for those who prefer a low distortion, linear magnetization curve nickel lamination core transformer. The dual-coil structure greatly improves immunity to external magnetic fields from power supplies, motors etc. The transformer is housed in a mu-metal can.

• 5 • 4 • 2	LL1943 Top view	10 ° 9 ° 8 ° 7 °	1 c 2 c 5 c	+ + + +	+ 10
∘ 1		6 •	4 0	 (Can	• core — 8

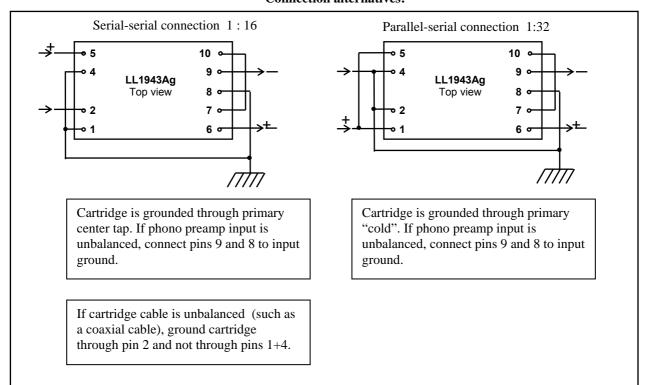
Dimensions (L x W x H above PCB, in mm)	47 x 28 x 24
Spacing between pins	5.08 mm (0.2")
Spacing between rows of pins	35.6 mm (1.4")
Rec. PCB hole diameter:	1.5 mm
Weight:	115 g
Static resistance of each primary:	0.8Ω
Static resistance of each secondary:	85 Ω
Frequency response (serial connection, source 10Ω ,	8 Hz 100 kHz +/- 1
no load / secondaries open):	
Isolation between windings/ between windings and core:	3 kV / 1.5 kV



Silver Wire Moving Coil Input Transformer LL1943Ag

LL1943Ag is a silver wire version of our LL1943 high turns ratio, high performance moving coil step-up transformer. The LL1943Ag combines our dual coil structure with high purity (99.99%) silver wire in an oversized design. The core is a mu metal lamination core for low distortion and for a linear magnetization curve. The dual-coil structure greatly improves immunity to external magnetic fields from power supplies, motors etc. The transformer is housed in a mumetal can.

Turns ratio:

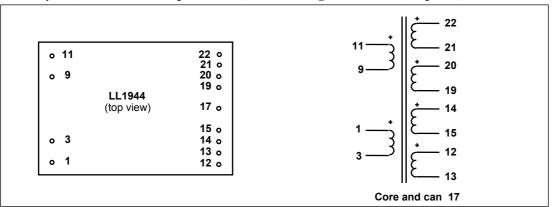

1 + 1 : 16 + 16

Rec. PCB hole diameter: 1.5 mm Weight: 115 g Static resistance of each primary: 0.4 Ω Static resistance of each secondary: 80Ω **Frequency response** (serial connection, source 10Ω , 8 Hz -- 100 kHz +/- 1.0 dB no load / secondaries open): 3 kV / 1.5 kV

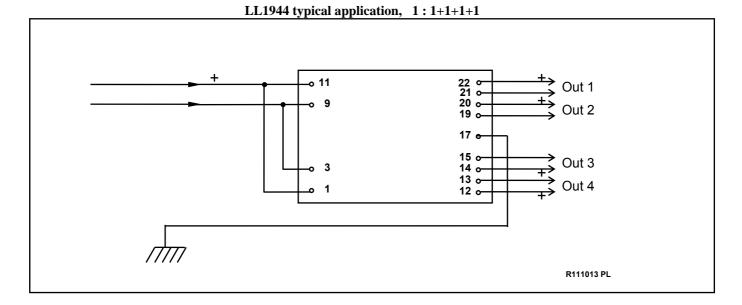
Isolation between windings/ between windings and core:

Connection alternatives:

Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN International Domestic Phone +46 - 176 13930 0176-13930 Fax +46 - 176 13935 0176-13935

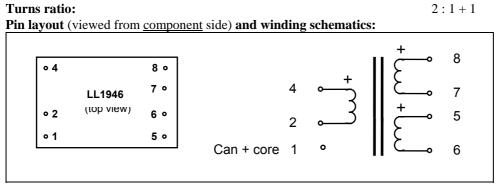

Audio Split Transformer LL1944

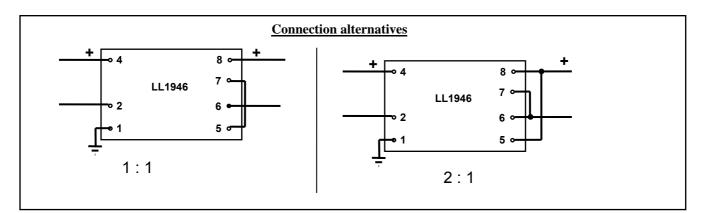
LL1944 is a four-output splitting transformer to be used with low impedance signal sources. Each of the four secondary windings is surrounded by primary winding sections. In addition to low leakage inductance, this ensures that output signal is maintained (but slightly dropped) on three of the secondary windings even if one of the secondaries is short-circuited, provided that the source is enough low impedance. The primary windings should normally be used in parallel.


Turns ratio:

1 + 1 : 1 + 1 + 1 + 1

Dims: (Length x Width x Height above PCB (mm)) 47 x 34 x 23 Pin Layout (viewed from component side) and Windings Schematics (simplified):

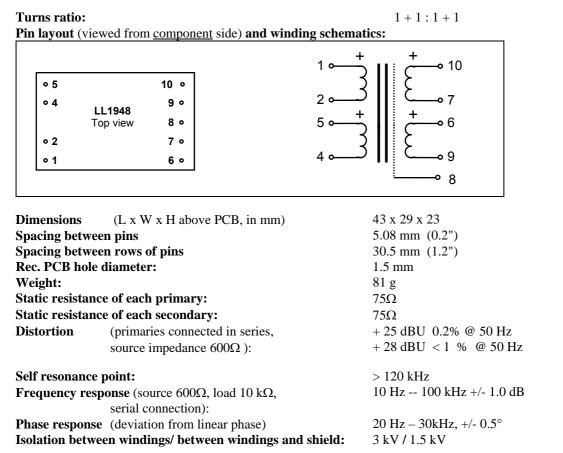

Housing:	Mu-metal
Core:	Silicon Iron C-core
Spacing between pins:	2.54 mm (0.1")
Spacing between rows of pins:	35.56 mm (1.4")
Weight:	130 g
Rec. PCB hole diameter:	1.3 mm
Static resistance of <u>each</u> primary (average):	54 Ω
Static resistance of <u>each</u> secondary (average):	110 Ω
Max. secondary level (each secondary)	+ 28 dBU @ 50 Hz
No-load primary impedance (primaries in parallel, primary level):	$> 0.9 \text{ k}\Omega @ 50 \text{ Hz}, +20$
	dBU
Balance of output (according to IRT, source 10Ω , Load 600Ω):	> 60 dB
Frequency response	
(source 10 Ω , each sec. loaded with 600 Ω , 0 dBU sec. level):	20 Hz - 50 kHz +/- 0.5 dB
Isolation between primary and secondary windings:	4 kV
Isolation between between windings and shields:	2 kV


Line Transformer LL1946

The LL1946 is a small size line transformer, with a high permeability mu-metal core and two two-section coils. The transformer is housed in a mu-metal can.

Dimensions	Spacing	Spacing between	Recommended PCB	Weight
Max. Length x Width x	between pins	rows of pins	hole diameter	
Height above PCB (mm)				
28 x 17.5 x 11	3.81 mm(0.15")	20.32 mm (0.8")	1.5 mm	16 g

	LL1946
Turns ratio	2:1+1
Static resistance of primary	8 Ω
Static resistance of each secondary	5 Ω
Primary level at 0.1 % THD, 150 Hz signal	+3 dBU
Source impedance 40Ω	
Frequency response +/- 1.5 dB	100Hz – 40kHz
Primary signal level -5 dBU, source 40 Ω	
Isolation between windings / between windings and	3 kV / 1.5 kV
core+housing	



PRELIMINARY R120224

Amorphous Core Line Input Transformer LL1948

LL1948 is a high-level line input transformer designed with audiophile applications in mind. The LL1948 combines Cardas high purity copper wire windings with our own cobalt-based amorphous core. The transformer is suitable for preamplifier or power amplifier line input with or without phase splitting. The windings are arranged to give perfect symmetry and high noise immunity. The two coil structure also greatly improves immunity to external magnetic fields from e.g. power supplies and motors. Primary and secondary windings are separated by electrostatic shields. The transformer is housed in a mu-metal can.

Serial-serial connection (1:1)Phase splitting for high level line input for 1: 1+1 input • 5 10 • 5 10 Centertap o 4 9 9 LL1948 LL1948 Top view 8 Top view 8 7 ¢ 7 0 o 2 6 9 6 1 /////

Connection alternatives and suggested applications:

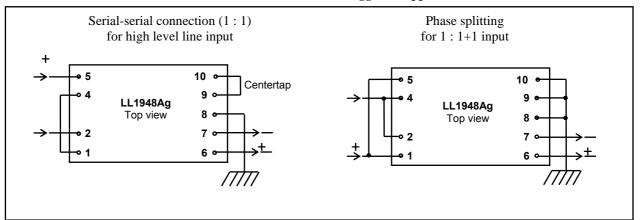
R121218 PL

Silver Wire, Amorphous Core Line input Transformer LL1948Ag

LL1948Ag is a high-level line input transformer for audiophile applications, suitable for amplifier line input with or without phase splitting. The windings are arranged to give perfect symmetry and high noise immunity. The two coil structure also greatly improves immunity to external magnetic fields from e.g. power supplies and motors. Primary and secondary windings are separated by electrostatic shields. The transformer is housed in a mu-metal can.

1 + 1 : 1 + 1

3 kV / 1.5 kV


Turns ratio:

Pin layout (viewed from component side) and winding schematics

° 5	1	0 •		ן ≿	$\begin{bmatrix} & & & 10 \\ & & & & \end{bmatrix}$
• 4	LL1948Ag	9 0	2 •		7
		8 •	5 •	<u> </u>	6 •
• 2		7 •		2 I	ξ
۰1		6 •	4 0		9

Dimensions	(L x W x H above PCB, in mm)	43 x 29 x 23
Spacing between pins		5.08 mm (0.2")
Spacing between rows of pins		30.5 mm (1.2")
Rec. PCB hole diameter:		1.5 mm
Weight:		81 g
Static resistanc	e of each primary:	72Ω
Static resistanc	e of each secondary:	72Ω
Distortion	(primaries connected in series,	+ 25 dBU 0.2% @ 50 Hz
	source impedance 600Ω):	+ 28 dBU < 1 % @ 50 Hz
Self resonance point:		> 120 kHz
Frequency response (source 600 Ω , load 10 k Ω ,		10 Hz 100 kHz +/- 1.0 dB
	serial connection):	
Phase response	(deviation from linear phase)	$20 \text{ Hz} - 30 \text{ Hz}, +/-0.5^{\circ}$

Isolation between windings/ between windings and shield:

Connection alternatives and suggested applications:

R121121 PL

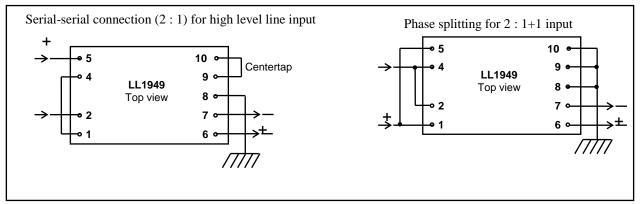
Line Input Transformer 2+2 : 1+1 LL1949

LL1949 is a high-level line input transformer normally used 2:1. The windings are arranged to give perfect symmetry if the transformer is used in phase splitting input applications. The two-coil structure also greatly improves immunity to external magnetic fields from e.g. power supplies and motors. Coils are wound using Cardas high purity post annealed audiophile grade copper wire Primary and secondary windings are separated by electrostatic shields. The core is a high permeability mu metal core. The transformer is housed in a mu-metal can.

Turns ratio:

Pin layout (viewed from <u>component</u> side) and winding schematics:

			1 • • • • • • 10
• 5		10 •	ξ ξ
• 4	LL1949	9 0	2 ~~~~ 7
	Top view	8 •	5 • • • • • 6
• 2		7 o	ξ [] ξ
• 1		6 °	4 • · · · • 9
			• 8


Dimensions (L x W x H above PCB, in mm)			
Spacing between pins			
Spacing between rows of pins			
Rec. PCB hole diameter:			
Weight:			
Static resistance of each primary:			
Static resistance of each secondary:			
Distortion (primaries connected in series,			
source impedance 600Ω):			
Self resonance point:			
Frequency response (source 600Ω , load 10 k Ω ,			
serial connection, ref 1 kHz, 6dBU input signal):			
Phase response (deviation from linear phase)			

Isolation between windings/ between windings and shield:

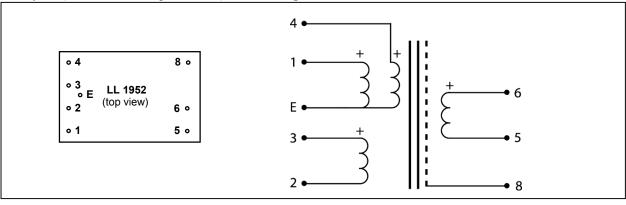
47 x 28 x 24
5.08 mm (0.2")
35.56 mm (1.4")
1.5 mm
115 g
81Ω
20 Ω
+ 24 dBU 0.1% @ 50 Hz
+ 29 dBU < 1 % @ 50 Hz
> 150 kHz
10 Hz - 120 kHz + 0.5 dB
10 HZ 120 KHZ +/- 0.3 dD
20 Hz – 20kHz, +/- 0.5°
,
4 kV / 2 kV

2 + 2 : 1 + 1

Connection alternatives and suggested applications:

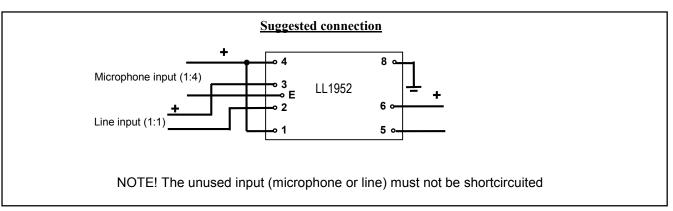
Microphone and Line Input Transformer LL1952

The LL1952 is an input transformer with dual primaries. The purpose is to be able to handle both line level signals in a 1:1 configuration, or microphone level signals in a 1:4 configuration. This is useful where space is limited, for instance in combination with a hybrid connector (XLR and jack) input.


As usual for our input transformers, primary and secondary windings are separated by Faraday shields. The transformer is encapsulated in a mu-metal housing for magnetic shielding.

1 : 4 (mic stepup) or 1 : 1 (line input)

Pin layout (viewed from <u>component</u> side) and winding schematics:


Isolation between primary and secondary windings/ between

windings and shield

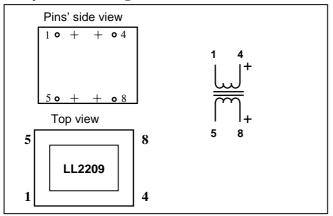
Dimensions (Max. Length x Width x Height above PCB (mm))	38 x 24 x 17
Spacing between pins	5.08 mm (0.2")
Spacing between rows of pins	27.94 mm (1.1")
Spacing between row 1-4 and E pin	2.54 mm (0.1")
Weight	46 g
Rec. PCB hole diameter	1.5 mm
Static resistance of primary 1+4 – E when connected as below	16Ω
Static resistance of primary 2 – 3	575 Ω
Static resistance of secondary 5-6	490 Ω
Distortion, microphone connection configuration, source impedance 150Ω	0.2 % @ 2 dBU primary level, 50 Hz
Distortion, mic input as above	1 % @ + 9 dBU primary level, 50 Hz
Distortion, line input configuration, source impedance 600 ohms	0.2% @ +14 dBU primary level, 50 Hz
Distortion, line input as above	1 % @ +22 dBU primary level, 50 Hz
Frequency response: mic input 200 ohms or line input 600 ohms. Load 16k (with 16k load reflected impedance is 1k (mic) or 16k (line))	10 Hz - 80 kHz +/- 1 dB ref 1kHz

⁴ kV / 2 kV

Turns ratio:

AB LARS LUNDAHL

Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN Phone:Int +46-176 139 30 Nat 0176-139 30 Fax: Int +46-176 139 35 Nat 0176-139 35


Line Transformer LL2209

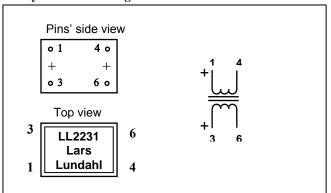
1:1

26.5 x 21 x 13

LL2209 is a small size line transformer with a mu-metal core.

Turns ratio: Dims (Length x Width x Hight above PCB (mm)): Pin layout and winding schematics:

Spacing between pins:		15.24 mm (0.6")
Spacing between rows of pins:		15.24 mm (0.6")
Weight:		20 g
Rec. PCB hole diameter:	1.5 mm	
Static resistance of primary (1 4):		61 Ω
Static resistance of secondary (5 8):		43 Ω
Frequency response (@ 0 dBU, source $2k\Omega$, load 5 k Ω)		20 Hz - 200 kHz +/- 0,5 dB
Isolation between primary and secondary windings:		4 kV


Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN International Phone +46 - 176 13930 Fax +46 - 176 13935

Domestic 0176-13930 0176-13935

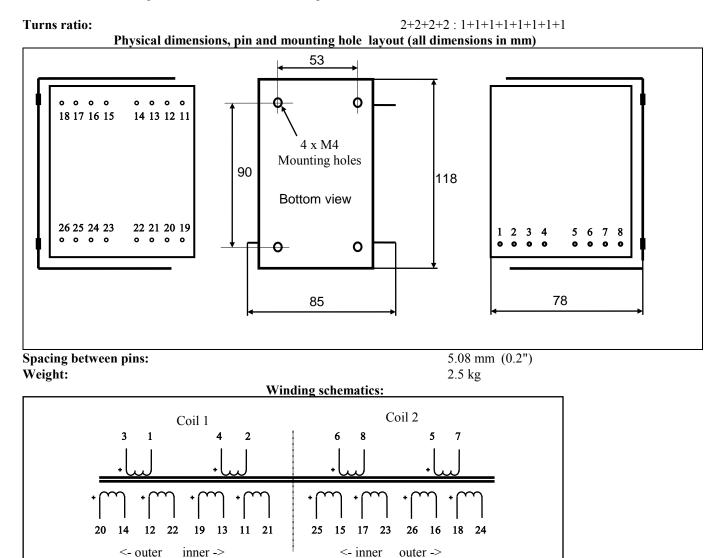
Line Transformer LL2231

LL2231 is a small size line transformer with an amorphous strip core.

Turns ratio: Dims (Length x Width x Height above PCB (mm)): Pin layout and winding schematics: 1 : 1 14.5 x 13.5 x 11.5

Spacing between pins:	7.62 mm (0.3")
Spacing between rows of pins:	10.16 mm (0.4")
Weight:	5 g
Rec. PCB hole diameter:	1.5 mm
Static resistance of primary:	48 Ω
Static resistance of secondary:	64 Ω
Frequency response (@ -10 dBU, source 600 Ω , load 10 k Ω)	50 Hz - 100 kHz +/- 1 dB
Isolation between primary and secondary windings:	4 kV

R130306 PL


AB LARS LUNDAHL

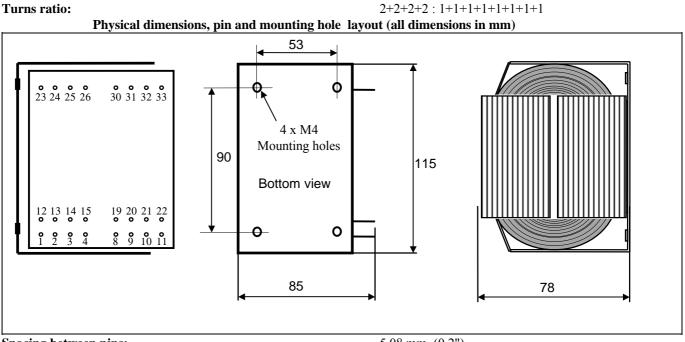
Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN Phone:Int +46-176 139 30 Nat 0176-139 30 Fax: Int +46-176 139 35 Nat 0176-139 35

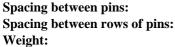
Universal Power Line Transformer LL2410

LL2410 is a high inductance line transformer for connecting PA system loudspeakers to power lines. The transformer is highly sectioned, with harmonically sized sections, which results in a minimum leakage inductance. The twelve windings can be combined in a number of ways, but symmetry between coil 1 and coil 2 is essential for good performance.

The transformer has a special audio C-core of our own production.

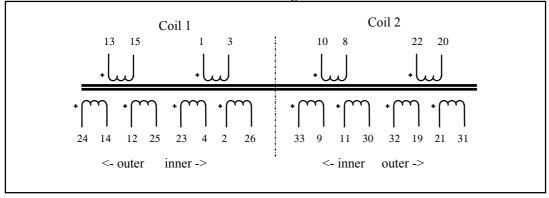
Static resistance of each primary (avarage):	0.80 Ω
Static resistance of each secondary (avarage):	$0.40~\Omega$
Max voltage per primary winding, at 50 Hz:	40 volts
Max voltage per secondary winding, at 50 Hz:	20 volts


AB LARS LUNDAHL


Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN Phone:Int +46-176 139 30 Nat 0176-139 30 Fax: Int +46-176 139 35 Nat 0176-139 35

Universal Power Line Transformer LL2411

LL2411 is a high inductance line transformer for connecting PA system loudspeakers to power lines. The transformer is highly sectioned with harmonically sized sections. This results in minimum leakage inductance and thus an excellent frequency response. The twelve windings can be combined in a number of ways, but symmetry between coil 1 and coil 2 is essential for good performance.

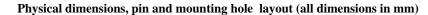

The transformer has a special audio C-core of our own production.

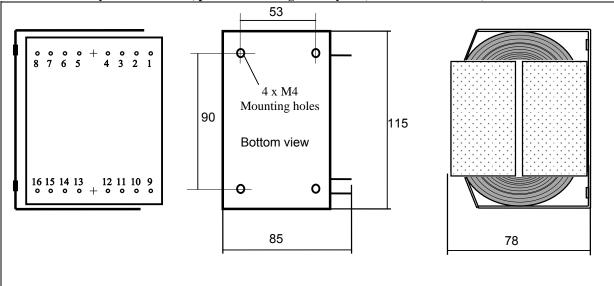
5.08 mm (0.2") 73.66 mm / 10.16mm (2.9" / 0.4" 2.5 kg

Winding schematics:

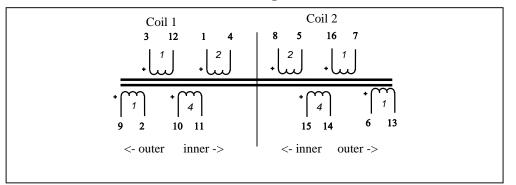
Static resistance of each primary (avarage): Static resistance of each secondary (avarage): Max voltage per primary winding, at 50 Hz: Max voltage per secondary winding, at 50 Hz: 0.80 Ω 0.40 Ω 40 volts 20 volts

Tibeliusgatan 7 SE-761 50 NORRTÄLJE SWEDEN


Universal Power Line Transformer LL2414

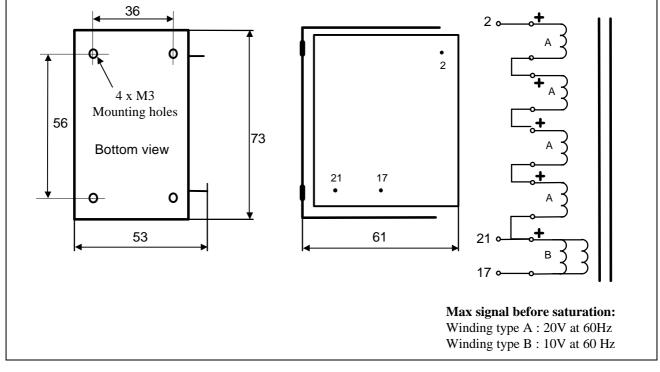

LL2414 is a high inductance line transformer for connecting PA system loudspeakers to power lines. The transformer is based on the very flexible (too flexible?) LL2410, but sectioning is reduced to facilitate usage in most applications. The eight windings can be combined in a number of ways, but symmetry between coil 1 and coil 2 is essential for good performance.

The transformer has a special audio C-core of our own production.

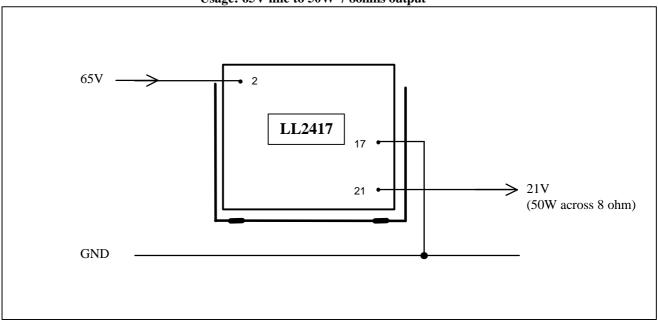

1 + 1 + 2 + 4 : 1 + 1 + 2 + 4

Core type Spacing between pins: Spacing between rows of pins: Distance between groups of pins in one row: Rec. PCB hole diameter: Weight: Lundahl audio C-core 5.08 mm (0.2") 76.20 mm (3.0") 20.32 mm (0.8") 2 mm 2.5 kg

Winding schematics:


Windnings	Static resistance	Max voltage rms across winding at 50 Hz
1 - 4 and 8 – 5	0.8 Ω	40 V
10 - 11 and $15 - 14$	1.7 Ω	80 V
3 - 12 and $16 - 7$	0.5 Ω	20 V
9 – 2 and 6 – 13	0.5 Ω	20 V

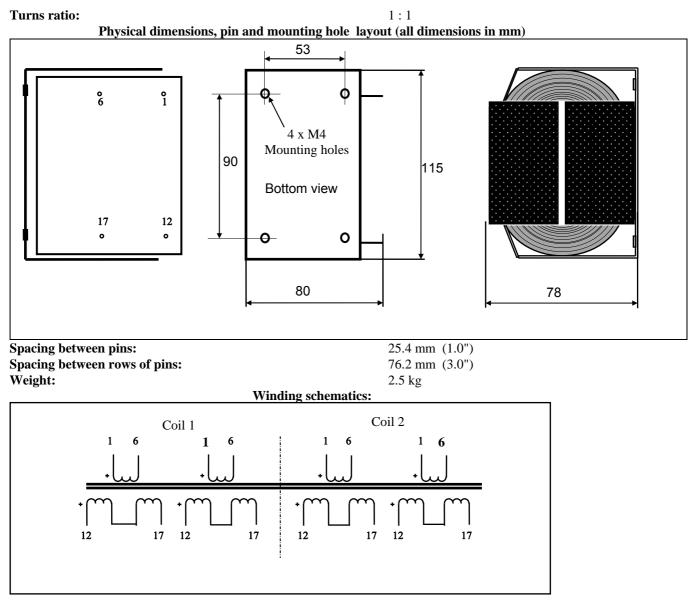
Loudspeaker transformer LL2417


Turns ratio 3 : 1 For 65V input to 50W across 8 ohms load Dual coil structure with Lundahl audio C-core

Physical dimensions, pin and mounting hole layout (all dimensions in mm) and internal winding structure

Weight No load impedance at 50Hz, 65V, typically Max input voltage at 50 Hz

- 0.89 kg 1.3 kohms 70V
- Usage: 65V line to 50W / 80hms output



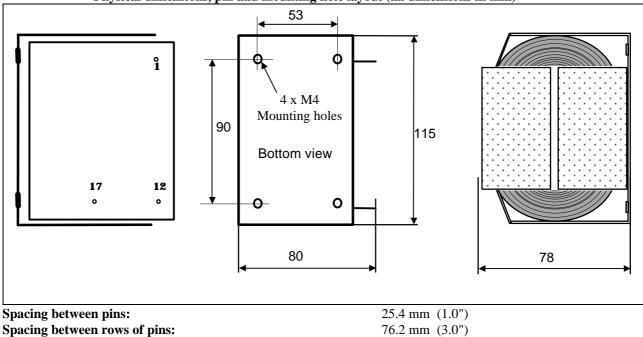
HIGH POWER ISOLATION TRANSFORMER LL2418

LL2418 is a high power (400W across 4 Ω at 50Hz) line isolation transformer for power amplifier output. The transformer is highly sectioned with harmonically sized sections. This results in minimum leakage inductance and thus an excellent frequency response. The transformer is based on our general purpose high power isolation transformer LL2410.

The transformer has a special audio C-core of our own production.

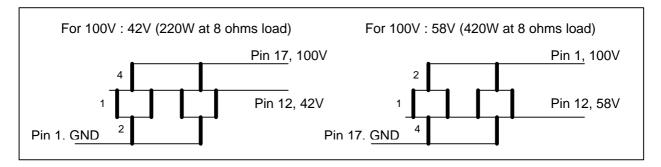
Static resistance of each primary:	$0.2 \ \Omega$
Static resistance of each secondary:	0.2 Ω
Max voltage per primary winding, at 50 Hz:	40 volts
Max voltage per secondary winding, at 50 Hz:	40 volts

Tibeliusgatan 7 SE-761 50 NORRTÄLJE SWEDEN International Domestic Phone +46 - 176 13930 0176-13930 Fax +46 - 176 13935 0176-13935


Auto Transformer LL2419 100V : 42V or 100V : 58V

LL2419 is a 100V line transformer for high quality audio applications. The transformer is well sectioned with harmonically sized sections.

Output power at 100V line signal, configuration 1 (42V) is 220W with 8 ohms load, 440W with 4 ohms load. Output power at 100V line signal, configuration 2 (58V) is 420W with 8 ohms load, 840W with 4 ohms load. The transformer has a special audio C-core of our own production.

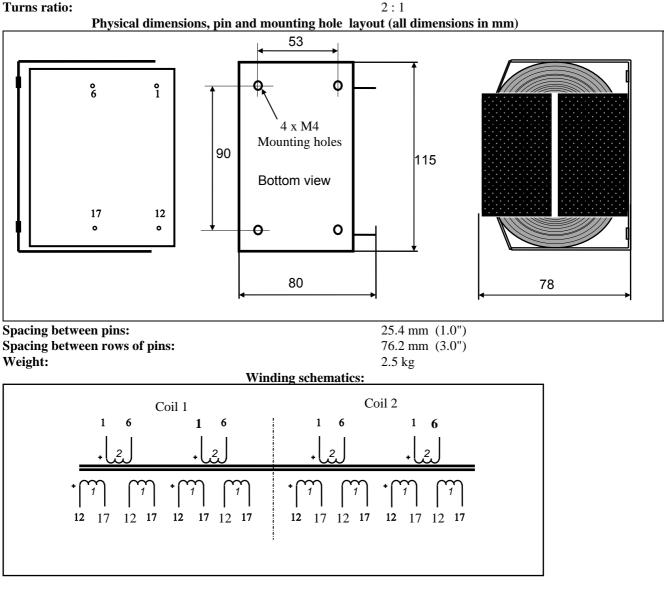

Turns ratio:

Autotransformer 7 : 3 : 0 **Physical dimensions, pin and mounting hole layout (all dimensions in mm)**

Weight:

Internal winding schematics and external connections:

Static resistance, pin 1 to pin 17: Static resistance, pin 1 to pin 12: Max signal voltage, pin 1 to pin 17 at 50 Hz: Transformer no load impedance, pin 1 to pin 17 at 100V, 50Hz 1.2 Ω
 0.4 Ω
 140 volts
 1 k Ω typically

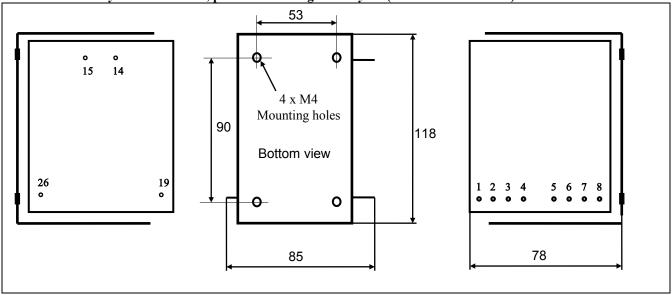

2.5 kg

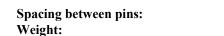
HIGH POWER STEP DOWN ISOLATION TRANSFORMER LL2420

LL2420 is a high power (400W across 1 Ω at 50Hz) step down line isolation transformer for power amplifier output. The transformer is highly sectioned with harmonically sized sections. This results in minimum leakage inductance and thus an excellent frequency response. The transformer is based on our general purpose high power isolation transformer LL2410.

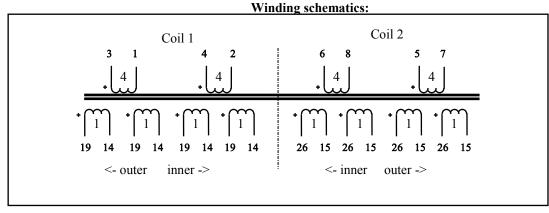
The transformer has a special audio C-core of our own production.

Static resistance of each primary:	$0.2 \ \Omega$
Static resistance of each secondary:	$0.05 \ \Omega$
Max voltage per primary winding, at 50 Hz:	40 volts
Max voltage per secondary winding, at 50 Hz:	20 volts


Audio Power Line Transformer LL2421


LL2421 is a highly section audio signal power output transformer for very low impedance loads The transformer has a special audio C-core of our own production.

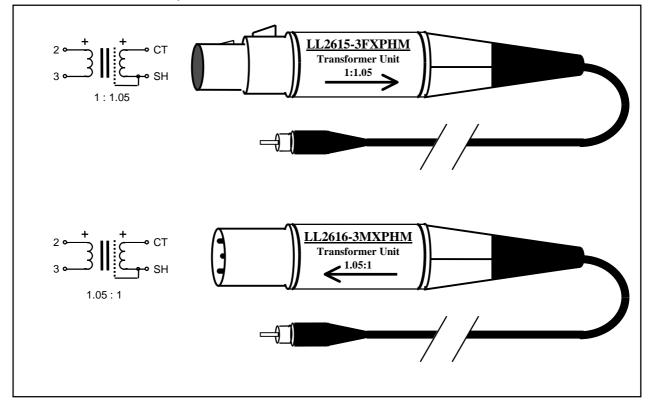
Turns ratio:


4+4+4+4 : 1+1

Physical dimensions, pin and mounting hole layout (all dimensions in mm)

Static resistance of each primary (avarage): Static resistance of each secondary (avarage): Primay inductance, primaries in parallel: Max voltage per primary winding, at 50 Hz: Max voltage per secondary winding, at 50 Hz: 0.80 Ω 0.025 Ω 1.5H approx. 40 volts 10 volts

For 4:1 high current stepdown, connect as follows:


- In+ pins 3 + 4 + 5 + 6In - pins 1 + 2 + 7 + 8Out+ pins 19 + 26
- Out- pins 14 + 15

R170111 PL

Ground Isolation, Balanced to Unbalanced Converter LL2615 and LL2616 for 0 dB loss with 10 kΩ load

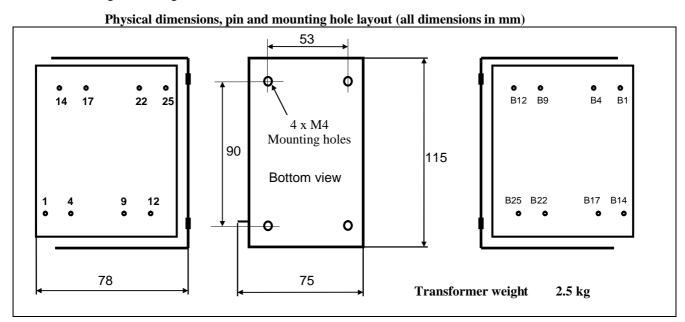
The XLR inline transformer units LL2615 and LL2616 are used for breaking up ground loops and for balanced-to-unbalanced conversion. In particular, when used with 10 kohms loads transformer signal loss is eliminated through a small step up turns ratio. The unit is magnetically shielded and contains a high impedance transformer with LF saturation above +15 dBU, 50 Hz.

The LL2615 and LL2616 are available in the following versions:

LL2615-3FXPHM Female XLR connector to Phono (RCA) male for 10k unbalanced load **LL2616-3MXPHM** Phono (RCA) male to male XLR connector for 10k balanced load

Cable length 3 ft approximately.

The arrows printed on the labels indicate intended signal direction.


Characteristics of built in transformer

Static resistance of primary:	250 Ω
Static resistance of secondary:	280 Ω
Core:	Amorphous strip core
Max level:	+15 dBU @ 50 Hz
Loss across transformer at $10k\Omega$ load	< 0.1 dB
Isolation between windings:	1 kV

Mains Transformer LL2728 115V+115V : 15V + 15V + 15V + 10V + 10V

LL2728 is a C-core mains transformer for solid state applications. The core is assembled with a carefully selected, small air-gap to compensate for any mains DC-unbalance. Estimated power rating 300 VA, which can be increased with good cooling.

Windings 1 - 4 and 12 - 9 respectively 3.6 Ω 115V	
Windings B4-B14, B17-B1, B9-B25, B22-B12 0.2 Ω 16V	
Windings 14 - 17 and 25 - 22 respectively 0.3 Ω 10 V	

Isolation between windings / between windings and core

4 kV / 4 kV

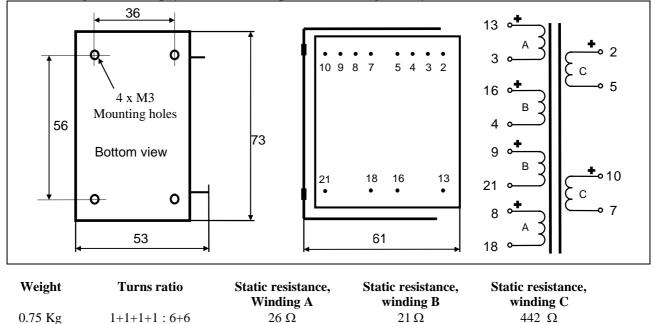
	V	Vinding s	chematics:	:		
	1 4 ↓ 115V	Coil 1	Coil 2	12 9		
+ (10V) 14 17	+ 15V B4 B14	+ (15V) B17 B1	+ 15V B9 B25	+ (15V) B22 B12	+ (10V) 10V 25 22	

Notes:

For 115V mains, connect primaries in parallel. For 230V mains, connect primaries in series.

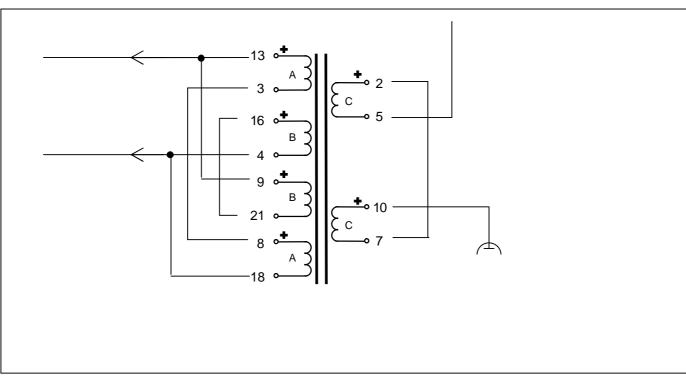
Suggested connection for 30V – CT – 30V +30V B4, B14 connect B9 CT B25 + B17 B1 connect B22 -30V B12

The 10V windings should be used symmetrically.



75 mA

Tube Amplifier Line Output Transformer LL2730 Laurens Organ Company GmbH


LL2730 is a tube amplifier line output transformer designed for 6:1 applications. For the LL2730/18mA, , the core air gap is chosen such that 18mA DC current generates a no signal core flux density of 0.9 Tesla when used with primaries in series. This leaves a flux density swing of 0.7 T for the signal.

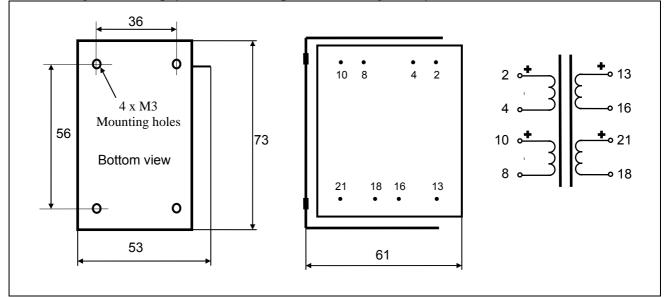
Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

Max. primary current (5W heat power):

Isolation between primary and secondary windings / between windings and core: 4 kV / 2 kV

Usage, SE to line output, 6:1

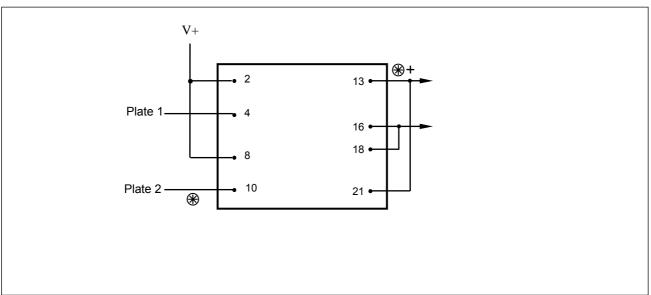
1+1:1+1


Low impedance tube amplifier line output transformer LL2731

The LL2731 is a four-sectioned dual coil C-core tube amplifier interstage / line output transformer for low impedance applications. LL2731 is available in PP and SE versions.

The coil is wound using our standard high internal isolation technique with isolation foil between each copper layer. The core is an audio C-core of our own production.

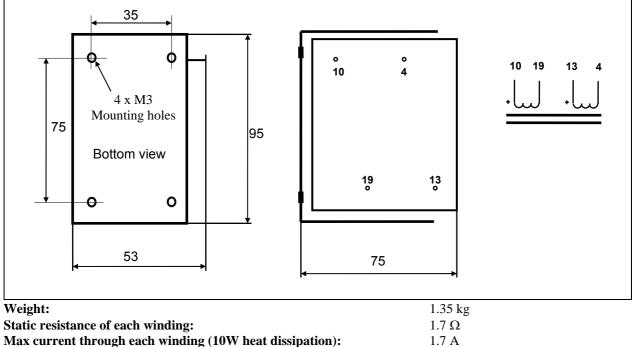
Turns ratio


Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

Weight:	0.6 kg
Static resistance of each primary:	48 Ω
Static resistance of secondary:	50 Ω
Isolation between windings / between windings and core:	4 kV / 2 kV
Max recommended DC current through any primary winding:	220mA (5W heat dissipation)

	LL2731/PP	LL2731/10mA	
Primary inductance (approx)			
Max signal across each section, at 30 Hz	75V r.m.s.	33V r.m.s.	

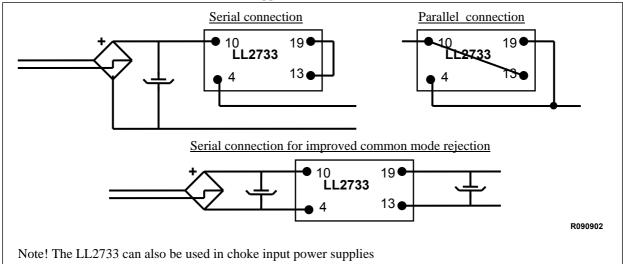
Suggested use, low impedance PP line output, 1:1:



4 kV / 2 kV

Filament Current Choke LL2733

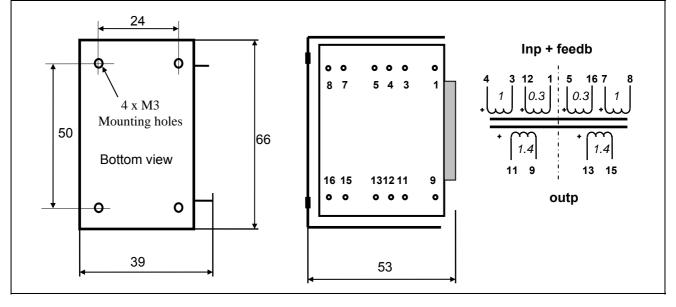
The LL2733 is a 2 coil choke for tube/valve filament current filtering. The coil is wound using our standard high internal isolation technique with isolation foil between each copper layer. The core is an audio C-core of our own production.


Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

Isolation between windings / between windings and core:

		Coils in series			Coils in parallel	
Туре	Approx. Inductance	Recommended DC current (1.25 T)	Saturating current (2.0 T)	Approx. Inductance	Recommended DC current (1.25 T)	Saturating current (2.0 T)
LL2733 / 1.7A	0.4 H	1.7 A	2.7 A	0.1 H	3.4 A	5.4 A
Max. ripple voltage at rec. DC current (Ripple voltage is approx. 0.42 x input voltage)		120 V rms / 100 Hz			60 V rms / 100 Hz	

Suggested connections:



Line Output Transformer for SE Solid State LL2734

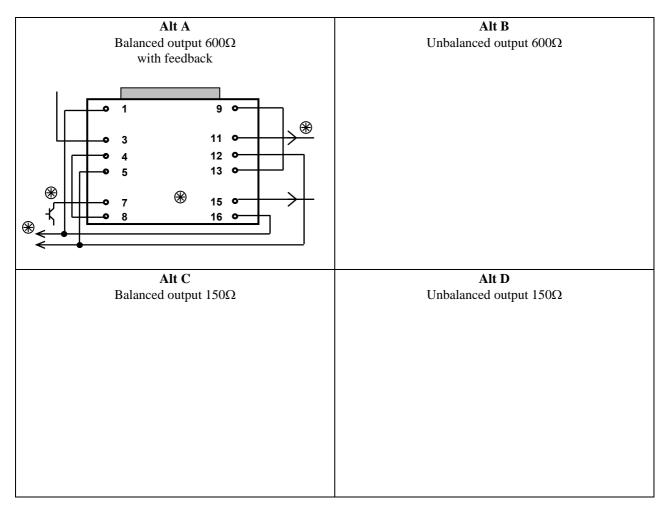
The LL2734 is a line output transformer for SE solid state output circuits, based on the Neve LO1166A. The transformer consists of two coils, each coil consists of one primary winding (divided in two sections to reduce leakage inductance), one secondary winding and one feedback winding. The core is a special audio C-core of our own production.

Turns ratio:

Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

Weight	Turns ratio	Static resistance, winding 11-9 and 13-15	Static resistance, winding 12-1 and 15-16	Static resistance, winding 4-3 and 7-8
0.35 Kg	1+1: 1.4+1.4 + 0.3 + 0.3	16 Ω	4 Ω	5 Ω

Isolation between primary and secondary windings / between windings and core:4 kMax standing DC current through any primary section (3W heat dissipation)5.


4	kV	/	2	kV	
	550)	m	A	

Туре	LL2734/100mA		
Application	Line output		
Connection	Alt A		
Turns ratio	1:1.4		
Primary DC current for 0.9	100mA		
Tesla			
Primary Inductance	1.0 H		
Frequence response,	15Hz – 80kHz		
+0, -1.5dB (ref. 1kHz)			
Source impedance 10Ω			
Load 100 kΩ			
Max primary signal voltage	11.5V rms		
(RMS) at 30 Hz (0.6T)			
Max output	26V rms		
voltage @ 50 Hz	30 dBU		

^{1 + 1} : 1.4 + 1.4 + 0.3 + 0.3

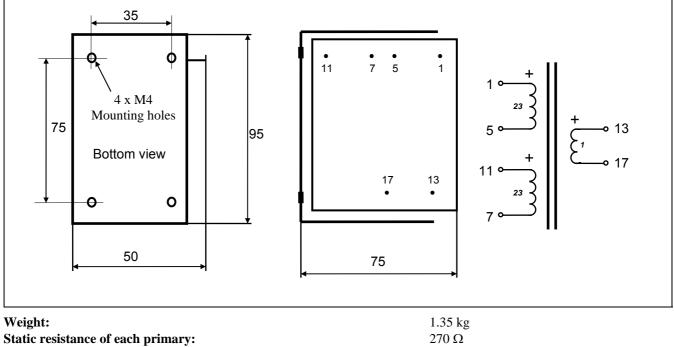
Solid State Line Output Transformer LL2734 Connection Alternatives

•	1	9 c	,
•	3	11 9)
•	4	12 9)
•	5	13 🖣)
•	7	15 G	,
•	8	16 °)

_		
• 16	8	0
o 15	7	•
• 13	5	•
• 12	4	•
• 11	3	•
o 9	1	0

Tibeliusgatan 7
S-761 50 NORRTÄLJE
SWEDEN

Tube amplifier output transformer LL2735B 16k : 8 ohms

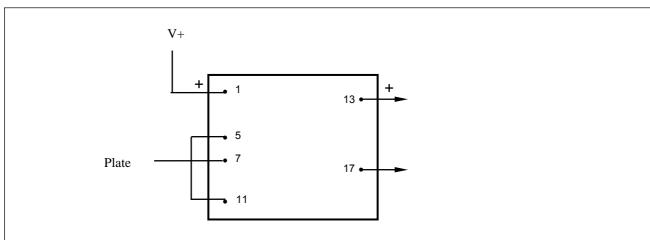

The LL2735B is a tube amplifier output transformer for 16k : 8 ohms impedance ratio, primarily designed for for high rp tubes such as 10Y, 801A and EML20B in single-end applications. The transformer is a dual coil transformer where coils are wound using our high internal isolation technique with isolation foil between each layer of copper wire. Each coil consist of one primary and two secondary sections. The isolation between primary and secondary sections are gradually increased closer to the tube anode connection in order to minimize capacitive energy storage.

The core is a silicon-iron audio C-core of our own production.

Turns ratio

23 + 23 : 1

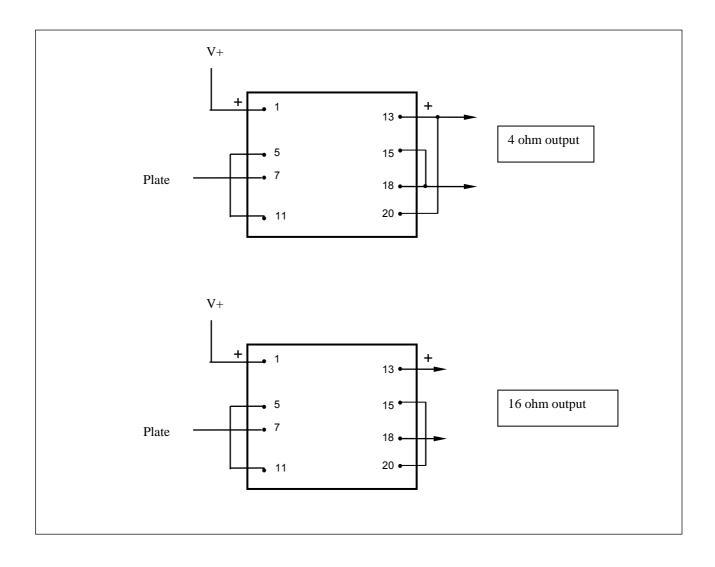
Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)


C4-4

Static resistance of secondary:	0.2 Ω
Isolation between windings / between windings and core:	4 kV /
Max DC current through any primary winding:	100 m/

2:	4 kV / 2 kV 100 mA (6W heat power)

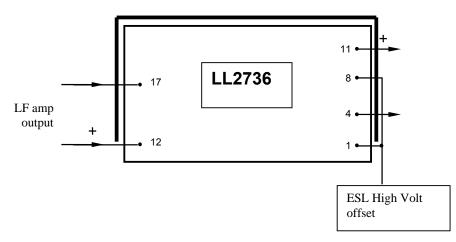
	LL2735B / 30mA	
Primary inductance	90H	
Max primary signal	300V rms @ 30Hz	
Max output power @ 30 Hz,	5 W	
Loudspeaker impedance 8 ohm		

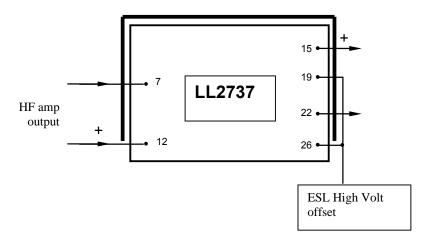

Suggested use:

LL2735F (16k to 4 and 16 ohms)

LL2735F is a 4 and 16 ohm version of the LL2735B

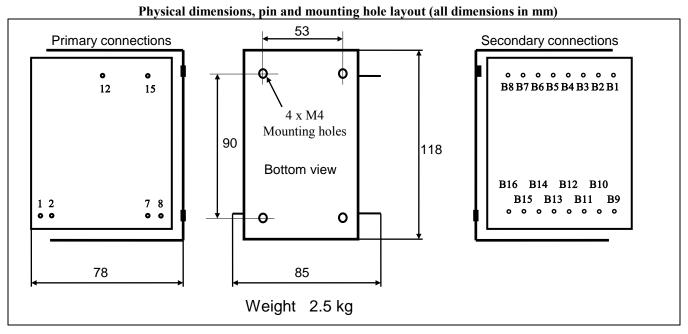
Suggested use:

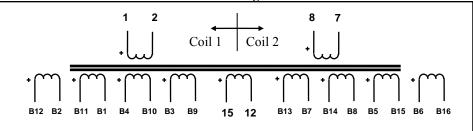



Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN

Electrostat Loudspeaker Transformers LL2736 and LL2737

LL2736 is a 1:72+72 low frequency drive transformer for electrostatic loudspeakers


LL2737 is a 1:45+45 mid-high frequency drive transformer for electrostatic loudspeakers



Tube Filament Current Mains Transformers LL2738

LL2738 is a C-core (with small air gap) mains transformer for applications where a large number of tube filaments needs supply. Estimated power rating 160 VA which can be increased with good cooling. Magnetic stray is small if the two coils are loaded symmetrically.

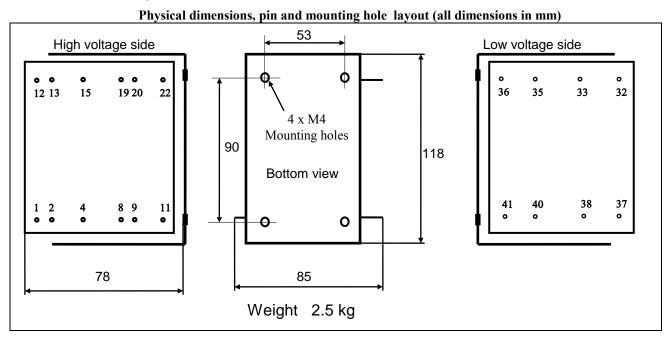
Winding schematics:

Primary connection alternatives. Primary in series for 230V (left) and in parallel for 115V (right).

Prim $\stackrel{+}{\longrightarrow}$ $\stackrel{1}{\longrightarrow}$ Idle current approx.230V $\stackrel{\bullet}{\longrightarrow}$ 100mA	Prim $\xrightarrow{*}$ \xrightarrow{*} $\xrightarrow{*}$ \xrightarrow{*} $\xrightarrow{*}$ \xrightarrow{*} $\xrightarrow{*}$ \xrightarrow{*} $\xrightarrow{*}$ \xrightarrow{*} $\xrightarrow{*}$ \xrightarrow{*} $\xrightarrow{*}$ \xrightarrow{*} $\xrightarrow{*}$ \xrightarrow{*} \xrightarrow	Idle current approx. 200mA
---	---	-------------------------------

Copper resistance, no load output voltages and max recommended transformer current (rms) with primary connected to 230 V serial / 115V parallel

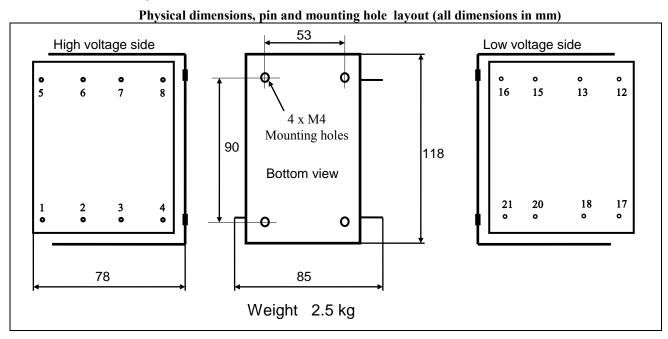
Primary res. Serial/parallel	Sec 15-12	All other secondaris
7.5 Ω / 1.9 Ω	29 Ω / 110 V	0.1 Ω / 6.6V *
	0.1 A	3 A
		*Will drop to approx 6 3V at 34

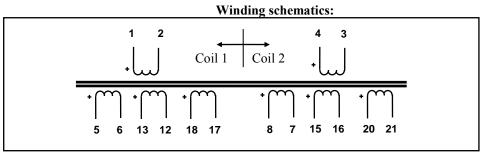

Will drop to approx 6.3V at 3A

Please note! Output current from rectifier: 63% of above with capacitor input rectifier, 95% of above with choke input R150220 PL rectifier.

Mains Transformers for Tube Amplifiers LL2740

C-core mains transformer. The core is assembled with a small air-gap to compensate for any mains DC-unbalance. Estimated power rating 250 VA which can be increased with good cooling. Magnetic stray is extremely small if secondaries of the two coils are loaded identically.


	Wind	ding schematics:	
	$\begin{array}{c} 1 2 \\ \downarrow 115 \\$	9 8 Coil 2 •	
+ 48 4 15	* 175 * 5.9 * 6.6 12 13 33 32 38 37	$\begin{array}{c} & & & \\$	+ 48 22 11


R150220 PL

Mains Transformers for Tube Amplifiers LL2741

C-core mains transformer. The core is assembled with a small air-gap to compensate for any mains DC-unbalance. Estimated power rating 250 VA which can be increased with good cooling. Magnetic stray is extremely small if secondaries of the two coils are loaded identically.

Connection alternatives. Primary in series for 230V (left) and in parallel for 115V (right).

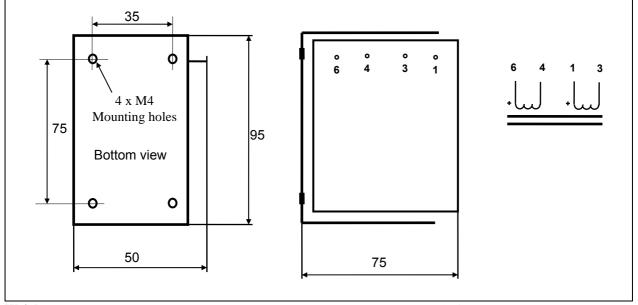
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Prim $\xrightarrow{\bullet}$ 1 115V $\xrightarrow{\bullet}$ 3 Sec 1 $\xrightarrow{\bullet}$ 5 Sec 1 $\xrightarrow{\bullet}$ 6 7 8	$13 \stackrel{+}{\longrightarrow} Sec 2$ $12 \stackrel{+}{\longrightarrow} Sec 2$ $18 \stackrel{+}{\longrightarrow} Sec 3$ $15 \stackrel{+}{\longrightarrow} Sec 4$ $20 \stackrel{+}{\longrightarrow} Sec 5$
---	--	--

Copper resistance, no load output voltages and max recommended transformer current (rms) with primary connected to 230 V serial / 115V parallel and Sec 1 connected as above

Primary res. Serial/parallel	No-load impedance	Sec 1	Sec 2	Sec 3	Sec 4	Sec 5
7.5 Ω / 1.9 Ω	2k / 230V	16 Ω / 290 V	0.1 Ω / 6.3V	0.1 Ω / 6.3V	0.1 Ω / 6.3 V	0.1 Ω / 6.3 V
	0.5k / 115V	0.55 A	3.1A	3.1A	3.1A	3.1A

Please note! Output current from rectifier: 63% of above with capacitor input rectifier, 95% of above with choke input rectifier.

Choke LL2742


The LL2742 is a 2 coils choke for tube amplifier anode supply.

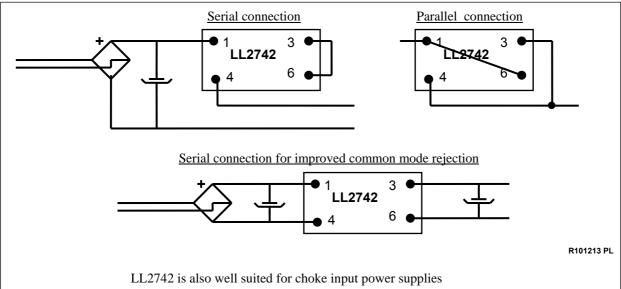
The choke is available with different core air-gap, which results in different inductance and DC current capability.

LL2742 can be used in choke input and cap input applications.

The coil is wound using our standard high internal isolation technique with isolation foil between each copper layer. The core is an audio C-core of our own production.

Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

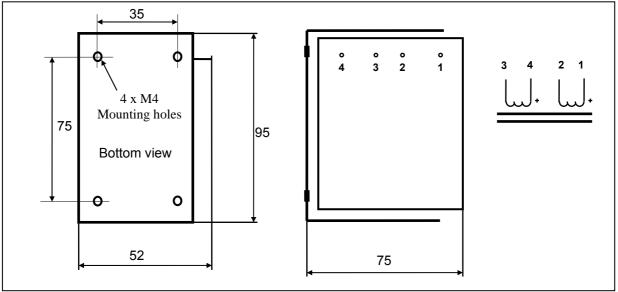
Weight:


Static resistance of each winding:

Isolation between windings / between windings and core:

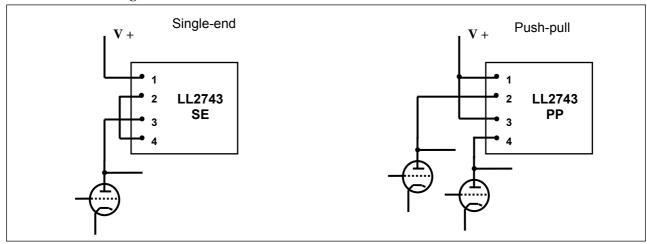
	_	Coils in series			Coils in parallel		
Туре	In- ductance	Recommended DC current	Saturating current	In- ductance	Recommended DC current	Saturating current	Heat dissipatio n
LL2742 / 100 mA	42 H	100 mA	140 mA	10 H	200 mA	280 mA	2 W
LL2742 / 175mA	24 H	175 mA	250 mA	6 H	350 mA	490 mA	5 W
LL2742 / 250 mA	17 H	250 mA	350 mA	4 H	500 mA	700 mA	10 W
Max. ripple voltage at rec. DC current	640V rms / 100 Hz		320V rms / 100 Hz				

Suggested connections:



Tube anode choke LL2743

The LL2743 is an anode choke for tube amplifiers. The choke is built with two coils and are using our own grainoriented silicon-iron audio C-core. The coils are made using a low capacitance coil winding technique. The two coil structure greatly reduces the risk of picking up hum caused by external magnetic fields from e.g. mains transformers. The LL2743 is available with different core airgaps for different DC currents on request.

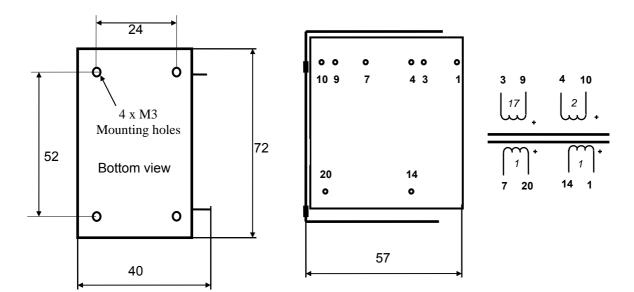

Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

Weight:	1.35 kg
Static resistance of each winding	200Ω
Max DC current per winding, all applications (5W heat dissipation required)	110 mA
Isolation between windings and core:	4 kV

Туре	Approx. inductance (windings in series)	Standing DC current	Saturating DC current	Max signal voltage @ 30 Hz
LL2743 / 70mA	64 H	70 mA	110 mA	450V RMS (70mA)
LL2743/90 mA	50 H	90 mA	140 mA	450V RMS (90mA)

Usage:

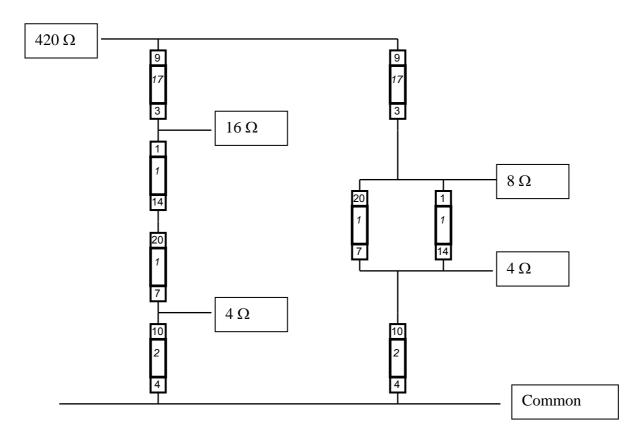
Autotransformer for Tube Amplifier LL2744


LL2744 is a transformer for matching 420 ohm DC-free signal to 4, 8 and 16 ohms loudspeakers. Power handling capacity approx 5 W at 30Hz The transformer has a special audio C ages of our own production

The transformer has a special audio C-core of our own production.

Turns ratio:

17 + 2 + 1 + 1

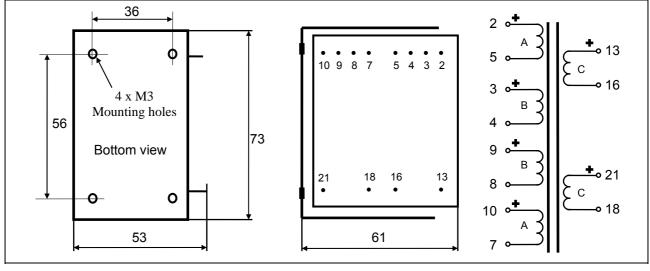

Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

Weight

0.5 kg

R120213 PL

Line Output Transformer LL2745


LL2745 is a line output transformer for tube amplifiers. The transformer is available with different core air gap for PP or SE drives.

The transformer primaries are wound with a special low capacitance winding technique to achieve best high frequency performance. The transformer has a special high flux, low distortion audio C-core of our own production.

The LL2745PP is assembled with a small core air gap to allow for some DC current unbalance.

For the S.E. versions of the LL2745, the core air gap is chosen such that the denoted DC current (18mA for a LL2745/18mA) generates a no signal core flux density of 0.9 Tesla when used with all primaries in series. This leaves a flux density swing of 0.7 T for the signal.

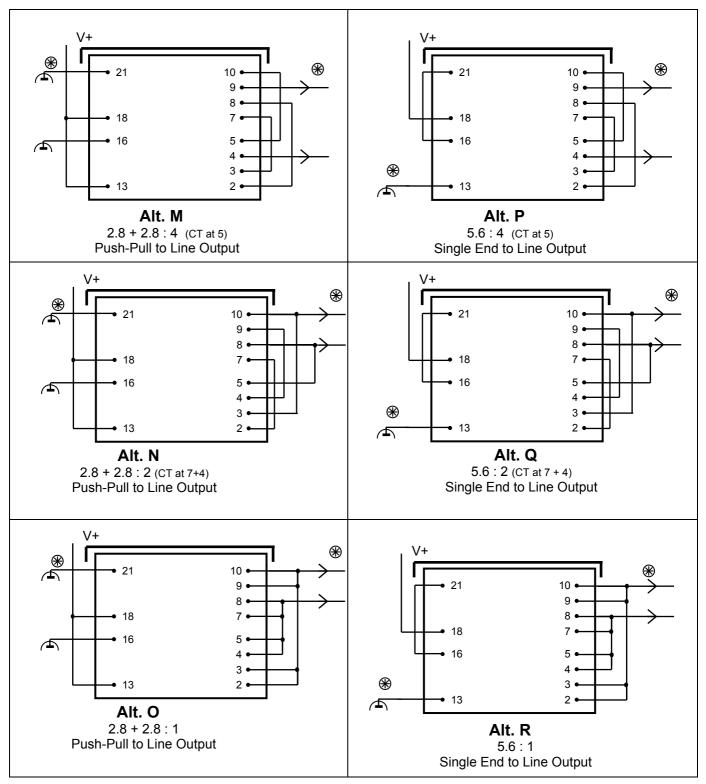
Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

Weight	Turns ratio	Static resistance,	Static resistance,	Static resistance,
		winding A	winding B	winding C
0.75 Kg	2.8+2.8:1+1+1+1	142 Ω	185 Ω	630 Ω

Max. current through any primary ("C") section:

50 mA Isolation between primary and secondary windings / between windings and core: 4 kV / 2 kV

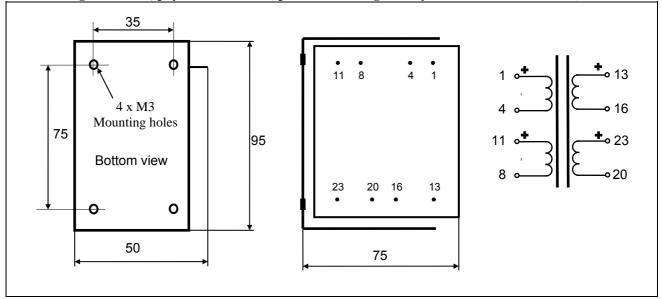
LL2745/PP LL2745/PP LL2745/PP LL2745/18mA Type Connection Alt M Alt N Alt O Alt P pp---cation PP to Line Out. PP to Line Out. PP to Line Out. SE to Line Out. 2.8 + 2.8 : 42.8 + 2.8 : 25.6:4 2.8:1Primary DC current for 0.9 18 mA Tesla 290 H Primary Inductance 290 H 290 H 90H Freq. Response (+/-1dB) @ Hz – kHz source impedance (*) $15k\Omega$ $15k\Omega$ 15 kΩ $3 k\Omega$ Secondaries open Max sec. voltage 380V r.m.s. 190V r.m.s. 100V r.m.s. 160 V r.m.s. @ 30 Hz in the tables indicates a


Туре	LL2745/18mA	LL2745/18mA
Connection	Alt Q	Alt R
	SE to Line Out.	SE to Line Out.
	5.6:2	5.6:1
Primary DC current for 0.9	18 mA	18 mA
Tesla		
Primary Inductance	90H	90H
Freq. Response (+/-1dB) @		
source impedance (*)	3.5kΩ	3.5kΩ
Secondaries open		
Max output	80 V r.m.s.	40 V r.m.s.
voltage @ 30 Hz		

(*) The source impedances used recommended upper limit, unless freq. response can be compromised. At lower source impedance resonance peaking will occure. It can be reduced using secondary load resistors.

R130225 PL

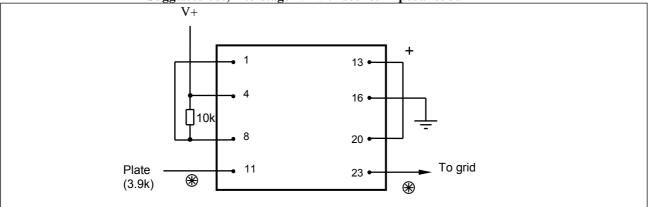
Tube Amplifier Interstage Transformer / Line Output Transformer LL2745 Connection Alternatives


Stepup 1:2 tube amplifier interstage transformer LL2746 (D)

The LL2746 is a three-section dual coil C-core tube amplifier stepup interstage transformer. The coil is wound using our low capacitance, high internal isolation technique with internal multilayer isolation foil where layer-to-layer signal voltage is big. Winding order is chosen to minimize destructive capacitive energy buildup between primary and secondary sections. The core is an audio C-core of our own production.

1+1:2+2

Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

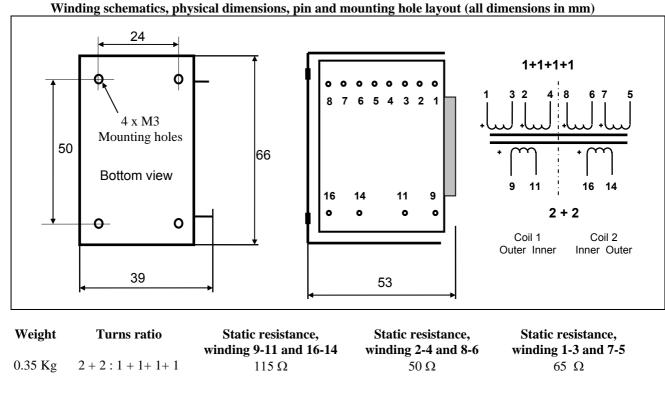


Weight:	1.35 kg
Static resistance of each primary:	75 Ω
Static resistance of secondary:	290 Ω
Isolation between windings / between windings and core:	4 kV / 2 kV
Max recommended DC current through any primary winding:	220mA (5W heat dissipation)

	LL2746/30mA	
Primary inductance (approx)	45H	
Max primary signal, at 30 Hz	80V r.m.s.	
(Operating point 1.2T)	(220V peak-peak)	

Frequency response, connected as below (source 3.9k, load 50pF) but with V+ connected to ground: -3dB at 15Hz; -3dB at 25kHz, +/- 1dB 22Hz - 18kHz

Suggested use, interstage 1:2 with source impedance 3.9k



Turns ratio:

2 + 2 : 1 + 1 + 1 + 1

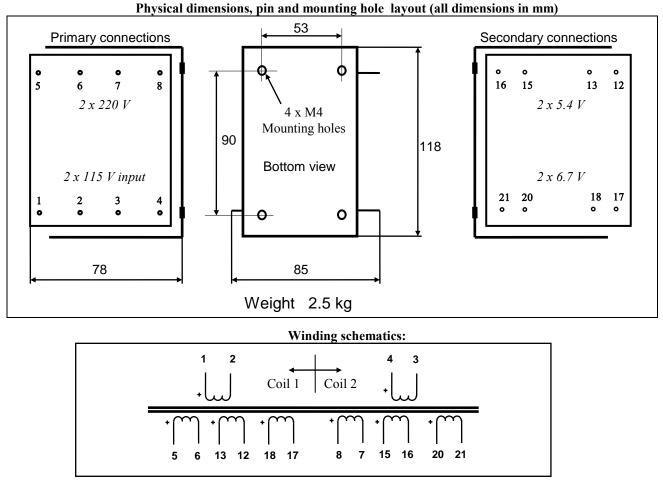
Line Output Transformer for Tube Amplifiers LL2747

LL2747 is a small line 1:1 turns ratio tube preamp line output transformer. In LL2747/PP the C-core is gapped with a small airgap to tolerate a certain DC offset current.

LL 2747 primary inductance

Isolation between primary and secondary windings / between windings and core:

Approx. 80H 4 kV / 2 kV


B+ $\textcircled{0}{0}$ (1) (2) (3) (

Suggested connection, PP line output, 1:1

Mains Transformers for Tube Amplifiers LL2748

C-core mains transformer. The core is assembled with a small air-gap to compensate for any mains DC-unbalance. Estimated power rating 250 VA which can be increased with good cooling. Magnetic stray is extremely small if secondaries of the two coils are loaded identically.

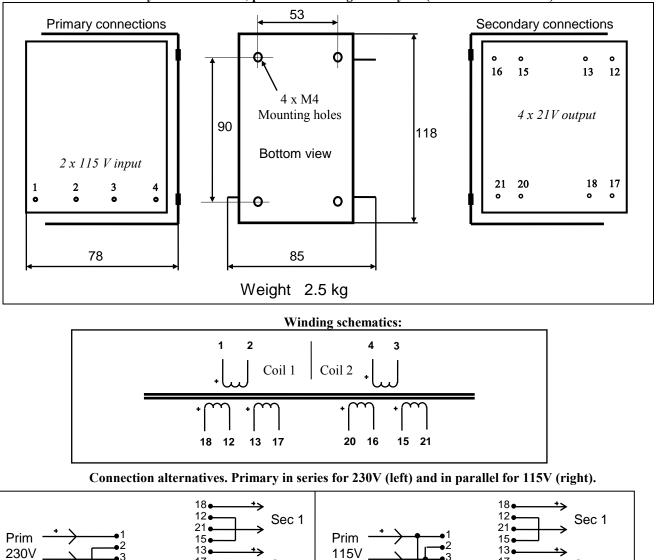
Connection alternatives. Primary in series for 230V (left) and in parallel for 115V (right).

Prim $\stackrel{\bullet}{\longrightarrow}$ 113 $\stackrel{\bullet}{\longrightarrow}$ Sec 2230V $\stackrel{\bullet}{\longrightarrow}$ 2313 $\stackrel{\bullet}{\longrightarrow}$ 1212230V $\stackrel{\bullet}{\longrightarrow}$ 2318 $\stackrel{\bullet}{\longrightarrow}$ 12123417 $\stackrel{\bullet}{\longrightarrow}$ Sec 315 $\stackrel{\bullet}{\longrightarrow}$ Sec 3Sec 1 $\stackrel{\bullet}{\longrightarrow}$ 16 $\stackrel{\bullet}{\longrightarrow}$ Sec 420 $\stackrel{\bullet}{\longrightarrow}$ Sec 521 $\stackrel{\bullet}{\longrightarrow}$ Sec 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
--	---

Copper resistance, no load output voltages and max recommended transformer current (rms) with primary connected to 230 V serial / 115V parallel and Sec 1 connected as above

Primary res. Serial/parallel	Sec 1	Sec 2	Sec 3	Sec 4	Sec 5
7.5 Ω / 1.9 Ω	36 Ω / 443 V	0.1 Ω / 5.4V	0.1 Ω / 6.7V	0.1 Ω / 5.4 V	0.1 Ω / 6.7 V
	0.3 A	4 A	2 A	4 A	2 A

Please note! Output current from rectifier: 63% of above with capacitor input rectifier, 95% of above with choke input rectifier. R150220 PL


17

16

20

Mains Transformers LL2749

C-core mains transformer for $2 \times 40V / 2A$ (or $2 \times 20V / 4A$). The core is assembled with a small air-gap to compensate for any mains DC-unbalance. Estimated power rating 250 VA which can be increased with good cooling. Magnetic stray is extremely small if secondaries of the two coils are loaded identically, as suggested below.

Physical dimensions, pin and mounting hole layout (all dimensions in mm)

Copper resistance, no load output voltages and max recommended transformer current (rms) with primary connected to 230 V serial / 115V parallel and Sec 1 connected as above

Sec 2

Primary res. Serial/parallel	Sec 1	Sec 2
10 Ω / 2.5 Ω	0.5 Ω / 42 V 2.5 A	0.5 Ω / 42 V 2.5 A

Voltage will drop approx 5% at nominal current

17.

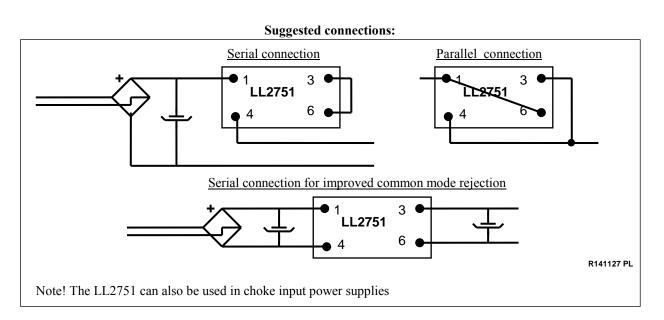
16

20

R150220 PL

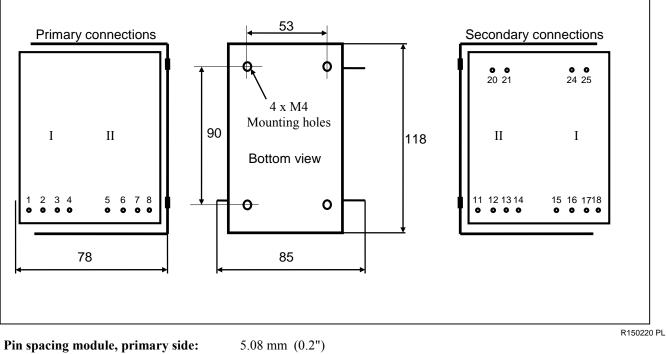

Sec 2

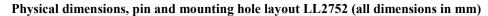
Filament Current Choke LL2751


The LL2751 is a small size two-coil choke for tube/valve filament current filtering. The coil is wound using our standard high internal isolation technique with isolation foil between each copper layer. The core is an audio C-core of our own production.

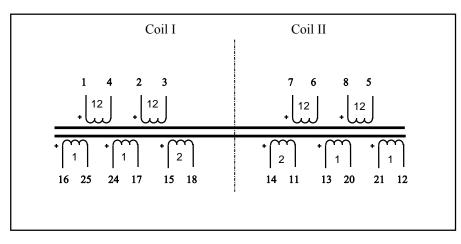
Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

Static resistance of each winding: Isolation between windings / between windings and core: 0.44 kg 0.5 Ω 4 kV / 2 kV


	Coils in series			Coils in parallel		
Туре	Approx. Inductance	Recommended DC current (1.25 T)	Saturating current (2.0 T)	Approx. Inductance	Recommended DC current (1.25 T)	Saturating current (2.0 T)
LL2751 / 0.6A	0.18 H	0.6 A	1 A	45 mH	1.2 A	2 A
Max. ripple voltage at rec. DC current (Ripple voltage is approx. 0.42 x input voltage)	30 V rms / 100 Hz		15 V rms / 100 Hz			



Tube Amplifier Output Transformer <u>LL2752</u>


LL2752 is an output transformer for tube amplifiers, primarily designed for 2k : 8 ohm applications. The LL2752 is available with different core air-gaps for different type of output stages. The transformers are highly sectioned with harmonically sized sections, which results in a minimum leakage inductance. This combined with a low capacitance coil winding technique results in a wide frequency range. The transformers are un-potted, open frame type suitable for mounting inside amplifier housings.

Pin spacing module, primary side: Pin spacing module, secondary side: Row spacing: Weight: Turns ratio: Core type: 5.08 mm (0.2")
7 mm approx..
75mm approx.
2.5 kg
12+12+12+12 : 2+ 1+1 +2+1+1
Lundahl silicon iron C-core. Also available with amorphous C-core

Winding schematics:

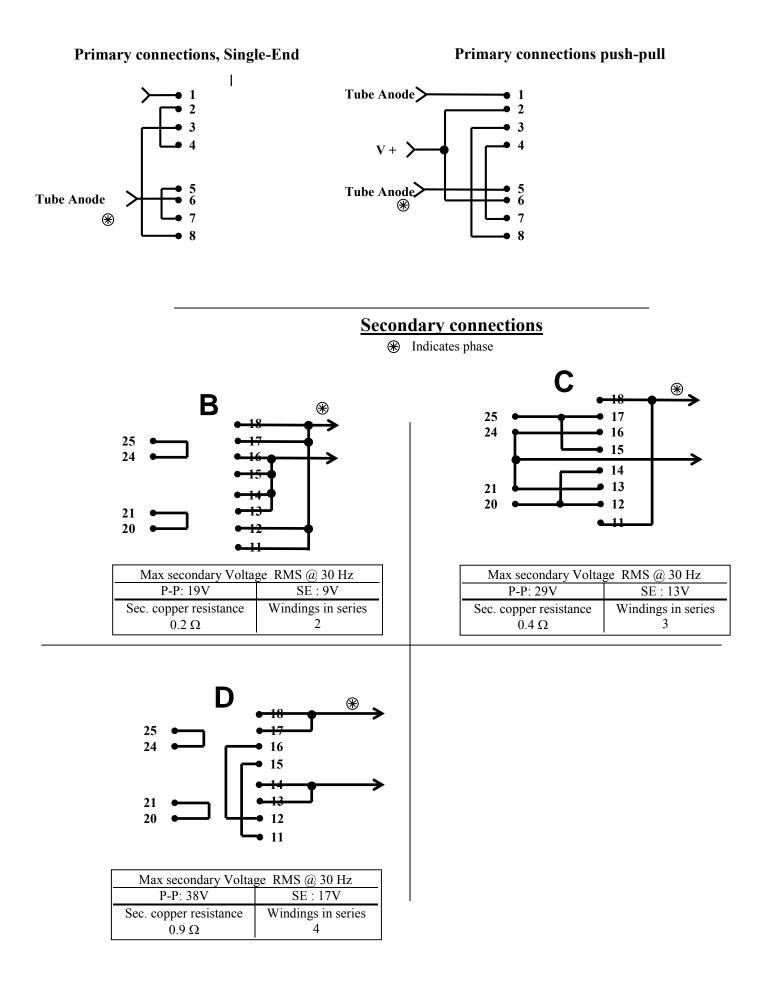
	LL2752		
Turns ratio:	12+12+12+12 : 2+ 1+1 +2+1+1		
Static resistance of primary (all in series)	92 Ω (4 x 23 Ω)		
Static resistance of each secondary winding (approx)	0.7Ω		
Primary leakage inductance (all in series)	l mH		
Max recommended primary DC current (heat dissip. 7W)	280 mA		
Max. primary <u>signal</u> voltage r.m.s. at 30 Hz (all in series)	Push-Pull 480V	Single End 215V	

Isolation between primary and secondary windings / between windings and core: 3 kV / 1.5 kV

Electrical characteristics

Primary Load Impedance, Max power and power loss.

	ix power and power			
	Sec. connection for 4/8/16 Ω			
	(See next page)			
	-/B/C	B/C/D	C/D/-	
	Primary Load Impedance			
LL2752	4.6 kΩ	2 kΩ	1.2 kΩ	
	Power and Loss			
Max. Power, P-P at 30 Hz	45W	105W	180W	
Max. Power, S.E. at 30 Hz	10 W	21 W	36W	
Power loss across transformer	0.2 dB	0.4 dB	0.7 dB	


Primary DC Current Core Air-gap and Primary inductance

	LL2752/60mA
Core Airgap	100 µ
(delta/2)	
Single end standing current for 0.9 Tesla	60mA
(recommended operating point)	
Primary inductance	30H

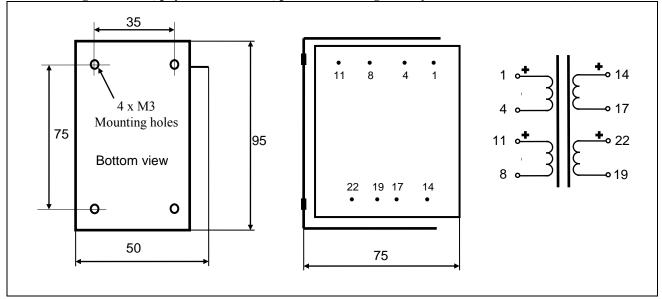
Frequency response, LL2752/60mA

10 Hz - 50 kHz +0/-1 dB

(source impedance 500Ω , load impedance 10 ohms Secondary connection "C"

Tube amplifier interstage transformer LL2753

The LL2753 is a three-section dual coil C-core tube amplifier interstage transformer.

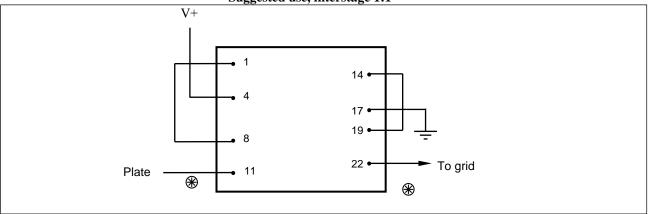

The coil is wound using our low capacitance, high internal isolation technique with internal multilayer isolation foil where layer-to-layer signal voltage is big. Winding order is chosen to minimize destructive capacitive energy buildup between primary and secondary sections.

The core is an audio C-core of our own production.

Turns ratio

1+1:1+1

Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)



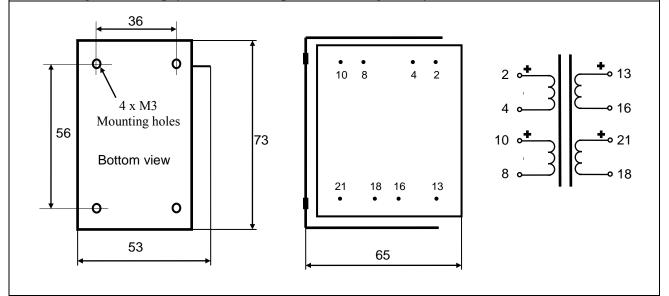
Weight:	1.35 kg
Static resistance of each primary:	75 Ω
Static resistance of secondary:	75 Ω
Isolation between windings / between windings and core:	4 kV / 2 kV
Max recommended DC current through primary windings:	180mA (5W heat dissipation)

	LL2753/25mA	
Primary inductance (approx)	50 H	
Max primary signal, at 30 Hz	120V r.m.s.	
(Operating point 0.9 T)	(330V peak-peak)	

Frequency response connected as below, source 3k, load 50 pF // 50k (with V+ connected to ground): -3dB at 12Hz; -3dB at 65kHz, +/- 1dB 25Hz – 45kHz

Suggested use, interstage 1:1

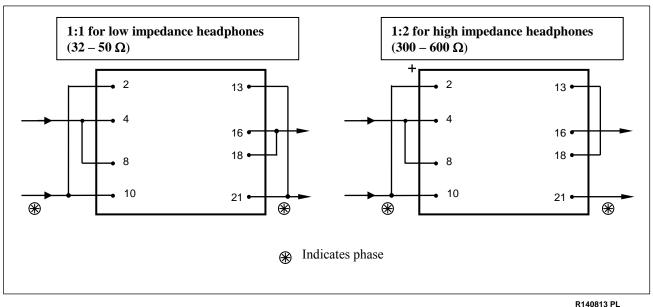
1+1:1+1


Output transformer for headphone amplifiers LL2754

The LL2754 is a four-sectioned, dual coil, low impedance C-core output transformer for headphone amplifier applications. LL2754 is available in PP and SE versions.

The coil is wound using our standard high internal isolation technique with isolation foil between each copper layer. The core is an audio C-core of our own production.

Turns ratio


Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

Weight: Static resistance of each primary: Static resistance of secondary: Max recommended DC current through primary windings: Isolation between windings / between windings and core: Frequency response 1:2 as below, source 10 ohms, load 500 ohms, ref 1kHz

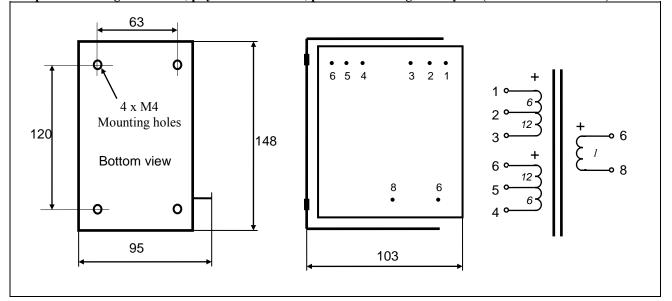
0.6 kg 7 Ω 7 Ω 850mA (5W heat dissipation) 4 kV / 2 kV 5Hz – 100kHz +/- 1 dB

	LL2754/PP	LL2754/XmA
Primary inductance (primaries in series)	7H	
Max signal across each section, at 20 Hz	20V r.m.s.	8 V r.m.s.
	(PP usage)	(SE usage)

Suggested use

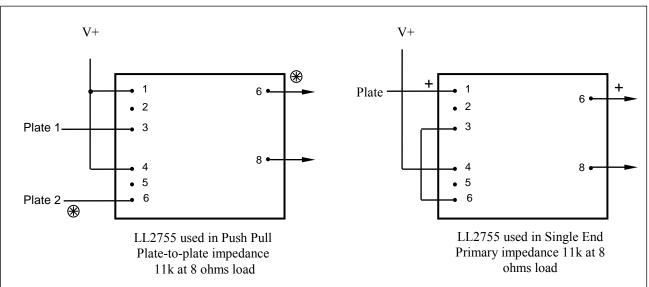
Tibeliusgatan 7
S-761 50 NORRTÄLJE
SWEDEN

18+18:1


Tube amplifier output transformer LL2755 11k : 8 ohms (for 813 and similar tubes)

The LL2755 is a dual coil C-core tube amplifier output transformer for 11k : 8 ohms impedance ratio available in PP and SE versions.

The coil is wound using our high internal isolation technique with isolation foil between each copper layer. The core is an audio C-core of our own production.


Turns ratio

Simplified winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

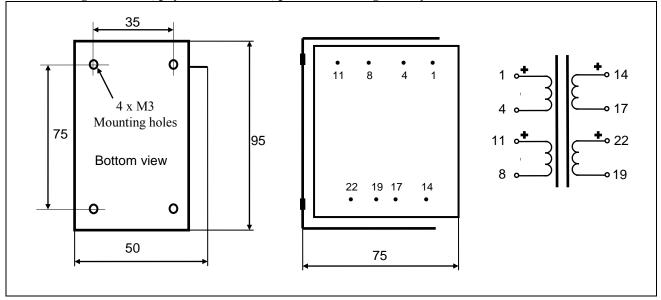
Weight:	4.6 kg
Static resistance of each primary:	82 Ω
Static resistance of secondary:	0.1 Ω
Isolation between windings / between windings and core:	4 kV / 2 kV
Max DC current through any primary winding (10W heat dissip):	350 mA

	LL2755/PP	LL2755/60mA
Primary inductance (approx.)		65H
Max primary signal	1000V R.M.S. @ 30 Hz	435V R.M.S. @ 30 Hz
Max output power @ 30 Hz	95W (8Ω spkr)	18W (8Ω spkr)

Suggested use:

Tube amplifier interstage transformer LL2756

The LL2756 is a three-section dual coil C-core tube amplifier interstage transformer.

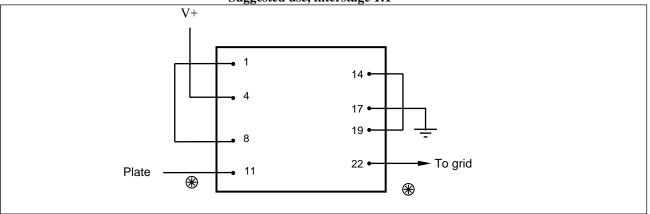

The coil is wound using our low capacitance, high internal isolation technique with internal multilayer isolation foil where layer-to-layer signal voltage is big. Winding order is chosen to minimize destructive capacitive energy build-up between primary and secondary sections.

The core is an audio C-core of our own production.

Turns ratio

1+1:1+1

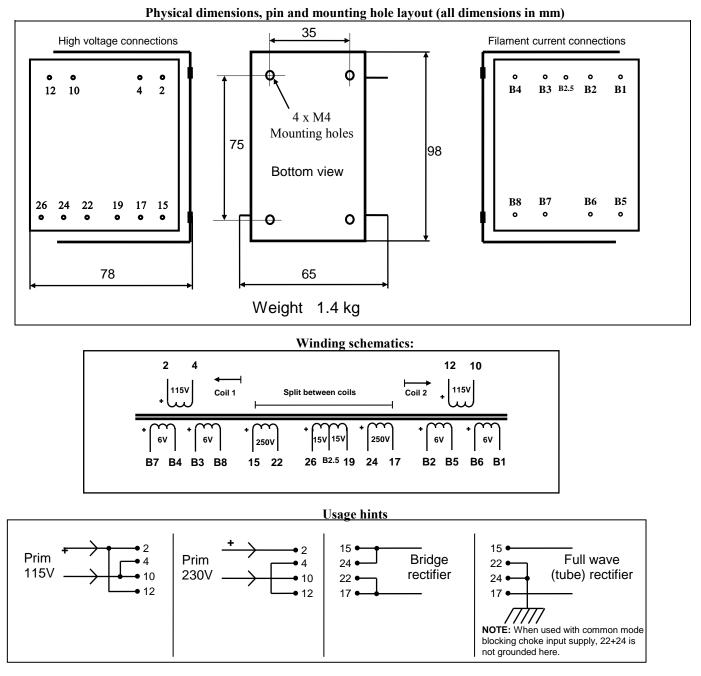
Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)



Weight:	1.35 kg
Static resistance of each primary:	180 Ω
Static resistance of secondary:	180 Ω
Isolation between windings / between windings and core:	4 kV / 2 kV
Max recommended DC current through primary windings:	120mA (5W heat dissipation)

	LL2756/25mA	
Primary inductance (approx)	70 H	
Max primary signal, at 30 Hz	180V r.m.s.	
(Operating point 0.9 T)	(500V peak-peak)	

Frequency response connected as below, source 4.5k, load 50 pF // 50k (with V+ connected to ground): -3dB at 12Hz; -3dB at 40kHz, +/- 1dB 25Hz – 30kHz

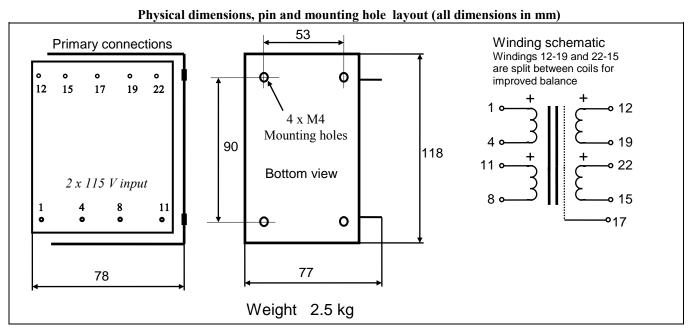

Suggested use, interstage 1:1

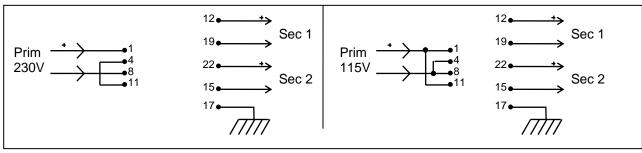
Mains Transformers for Tube Preamplifiers LL2758

C-core mains transformer, assembled with a small core air-gap to compensate for any mains DC-unbalance. Estimated power rating 100 VA, which can be increased with good cooling. The 2 x 250V secondaries are internally divided between the two coils. As a result, the transformer can be used with bridge or full wave rectifiers without a problem of asymmetric load. Magnetic stray is extremely small if filament secondaries of the two coils and the 15V-0-15V winding are loaded symetrically.

Output voltage (rms) at indicated load current, and coil resistance.

		Primary c	connected to 2	230 V series / 1	115V parallel		
Primary res.	Sec 1	Sec 2	Sec 3	Sec 4	Sec 5	Sec 6	Sec 6
Series/parallel	Pins 15 - 22	Pins 24 - 17	Pins 26 - 19	Pins B7 – B4	Pins B6 – B1	Pins B3 – B8	Pins B2 – B5
$17\Omega/4\Omega$	250V / 130mA	250V /	30V / 0.1A	6 V / 2A	6 V / 2A	6 V / 2A	6 V/ 2A
	115Ω	130mA	8Ω	0.2Ω	0.2Ω	0.2Ω	0.2Ω
		115Ω					


Please note! Output current from rectifier: 63% of above with cap. input rectifier, 95% of above with choke input rectifier. R150327 PL


Mains Transformers LL2760

C-core mains transformer for $2 \times 115 \text{V} / 0.9 \text{A}$. The core is assembled with a small air-gap to compensate for any mains DC-unbalance. Estimated power rating 200 VA (heat dissipation 11W) which can be increased with good cooling. Magnetic stray is extremely small due to the dual coil structure. A Faraday shield is provided between primary and secondary windings to improve immunity from mains HF noise.

Turns ratio: 1 + 1 : 1 + 1

Connection alternatives. Primary in series for 230V (left) and in parallel for 115V (right).

Copper resistance, no load output voltages and max recommended transformer current (rms) with primary connected to 230 V serial / 115V parallel

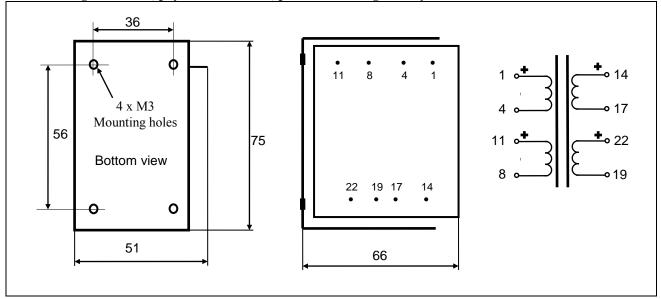
Primary res. Serial/parallel	Sec 1	Sec 2
$7~\Omega$ / $1.7~\Omega$	4.1 Ω / 115 V	3.9 Ω / 115 V
	0.9 A	0.9 A

Voltage will drop approx 6% at nominal current

R150213 PL

Tube amplifier interstage transformer LL2762

The LL2762 is a three-section dual coil C-core tube amplifier interstage transformer.


The coil is wound using our low capacitance, high internal isolation technique with internal multilayer isolation foil where layer-to-layer signal voltage is big. Winding order is chosen to minimize destructive capacitive energy build-up between primary and secondary sections.

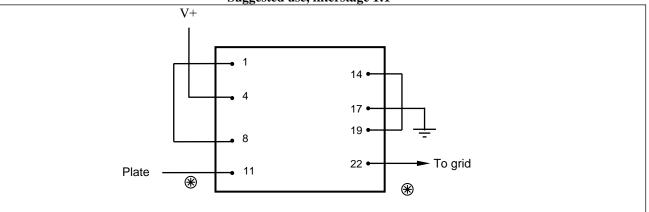
The core is an audio C-core of our own production.

Turns ratio

1+1:1+1

Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

Weight:


Static resistance of each primary:
Static resistance of secondary:
Isolation between windings / between windings and core:
Max recommended DC current through primary windings:

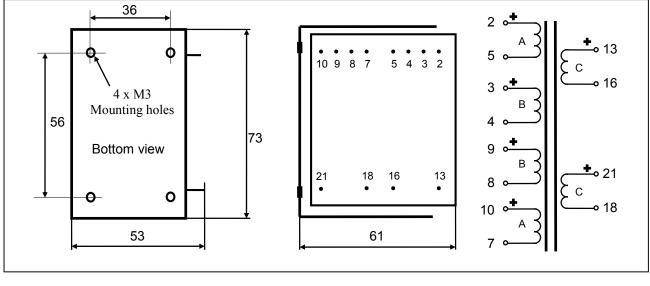
0.75 kg
560 Ω
560 Ω
4 kV / 2 kV
50mA (3W heat dissipation)

	LL2762/16mA	
Primary inductance (approx)	115 H	
Max primary signal, at 30 Hz	220V r.m.s.	
(Operating point 0.9 T)	(600V peak-peak)	

Frequency response connected as below, source 4.5k, load 50 pF // 50k (with V+ connected to ground): -3dB at 12Hz; -3dB at 33kHz, +/- 1dB 20Hz - 30kHz

Suggested use, interstage 1:1

Small Size Tube Amplifier Output Transformer LL2764

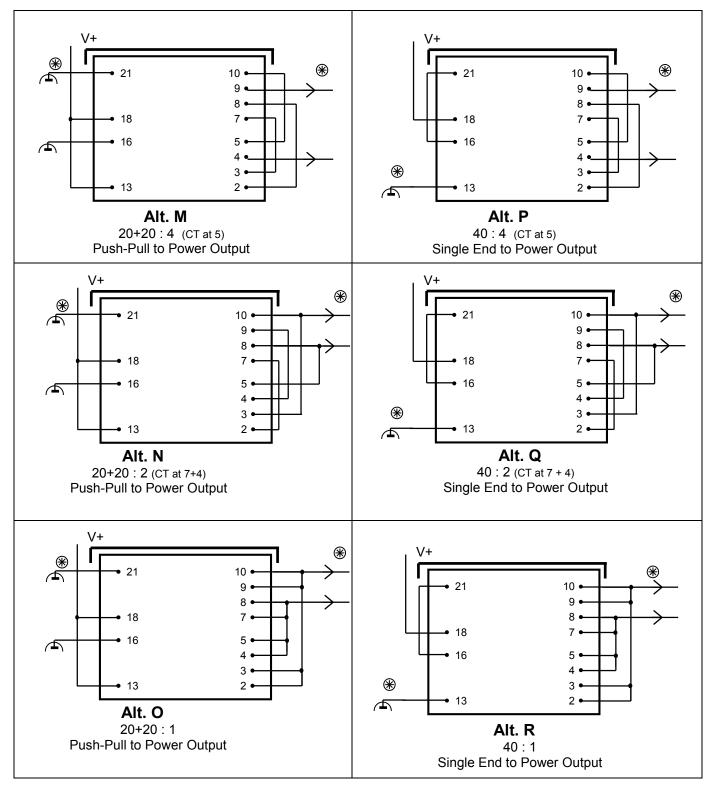

LL2764 is a small size power output transformer for tube amplifiers. The transformer is available with different core air gap for PP or SE drives.

The transformer has a special high flux, low distortion audio C-core of our own production.

The LL2764PP is assembled with a small core air gap to allow for some DC current unbalance.

For the S.E. versions of the LL2764, the core air gap is chosen such that the denoted DC current (50mA for a LL2764/50mA) generates a no signal core flux density of 0.9 Tesla when used with all primaries in series. This leaves a flux density swing of 0.7 T for the signal.

Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)


Weight	Turns ratio	Static resistance,	Static resistance,	Static resistance,
		winding A	winding B	winding C
0.75 Kg	20+20:1+1+1+1	$0.7 \ \Omega$	0.6 Ω	140 Ω

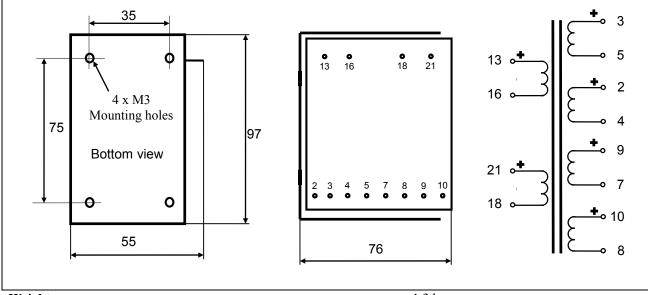
 $\begin{array}{ll} \mbox{Max. current through any primary ("C") section (4 W heat dissipation):} & 120 \ \mbox{mA} \\ \mbox{Isolation between primary and secondary windings / between windings and core:} & 4 \ \mbox{kV} / 2 \ \mbox{kV} \\ \end{array}$

Туре	LL2764/PP	LL2764/PP	LL2764/50mA	LL2764/18mA
Connection	Alt O	Alt N	Alt R	Alt Q
Application	PP 4.8 k : 3Ω	PP 3.2k : 8 ohms.	SE 4.8k : 3Ω.	SE 3.2k : 8
Turns ratio	40:1	20:1	40:1	20:1
Primary DC current for 0.9	-	-	50 mA	50 mA
Tesla				
Primary Inductance	? H	? H	25 H	25 H
Freq. Response (+/-3dB) @			15Hz – 50kHz	
source impedance (*)	2 kΩ	1kΩ	2 kΩ	1kΩ
Load	4 Ω	8 Ω	4 Ω	8 Ω
Max sec. voltage @ 30 Hz	7 V r.m.s.	14V r.m.s.	3 V r.m.s.	6 V r.m.s.
Output power	12 W	24W	2W	4W

R160520 PL

Tube Amplifier Output Transformer LL2764 Connection Alternatives

Tibeliusgatan 7
S-761 50 NORRTÄLJE
SWEDEN


Output transformer for tube headphone amplifiers LL2765

The LL2765 is a three sectioned, dual coil, C-core output transformer for headphone amplifier applications. LL2765 is available in PP and SE versions.

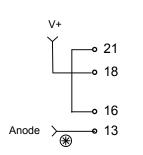
The coil is wound using our standard high internal isolation technique with isolation foil between each copper layer. The core is an audio C-core of our own production.

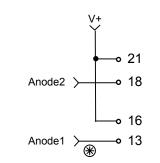
Turns ratio

6+6:1+1+1+1 Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

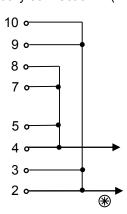
Weight: 1.3 kg Static resistance of each primary: 75 Ω Static resistance of secondaries 2-4 and 7-9 3.5 Ω Static resistance of secondaries 3-5 and 8-10 4.5 Ω Max recommended DC current through primary windings: 180mA (5W heat dissipation) Isolation between windings / between windings and core: 4 kV / 2 kV **Frequency response**

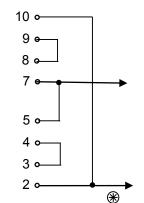
	LL2765/PP	LL2765/30mA
Primary inductance (primaries in series)	170H	64H
Max primary signal at 30 Hz	370V r.m.s.	160 V r.m.s.
(primaries in series)	(PP usage)	(SE usage)

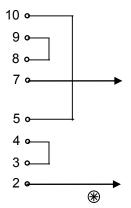

Suggested use


Headphone impedance	Suggested connection alternative	Turns ratio	Primary impedance (ohms)
32 ohms	Α	12:1	4.6k
150 ohms	В	6:1	5.4k
600 ohms	С	3:1	5.4 k

R160603 PL


Connection alternatives


Primary connection for Single-End

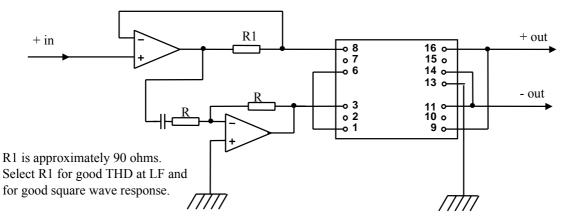

Secondary connection A (12:1)

Secondary connection B (6:1)

Secondary connection C (3:1)

Primary connection for Push-Pull

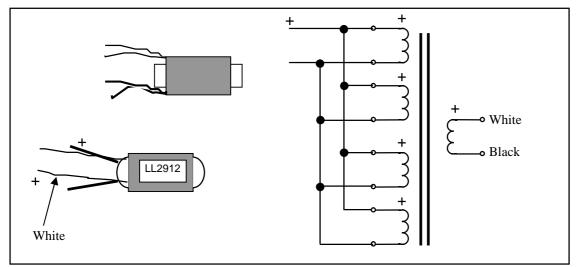
Audio Output Transformer LL2811


LL2811 is an audio output transformer for balanced drive, with the following features:

- 1. Four section winding structure for small leakage inductance.
- 2. Ideally used 2 : 1 (secondaries in parallel) with e.g. NE5532 op amps for low noise.
- 3. Precision made audio C core for small size.
- 4. Two-coil structure and mu-metal housing for high magnetic noise immunity.
- 5. Designed to fit three in a row across a Euroboard.

The secondaries can be connected in parallel for low output impedance or in series for high output level.

Fundamental design of driving circuitry, mixed feedback, 2:1, suggested by A. Offenberg, NRK


Ribbon Microphone Transformer LL2912

LL2912 is a flying lead version of microphone ribbon transformer LL2911. Core is our proprietary high mu amorphous strip core.

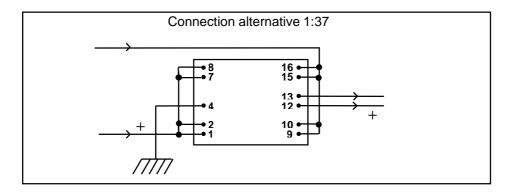
Turns ratio: Dimensions:

Length [leads not included] Max diameter 1 : 37 27mm 19.5 mm

Layout and Windings Schematics:

Weight: Core: Static resistance of primary: Static resistance of secondary: 17~g Amorphous strip core $0.05~\Omega$ 59 Ω

Turns ratio:


1 + 1 + 1 + 1 : 37

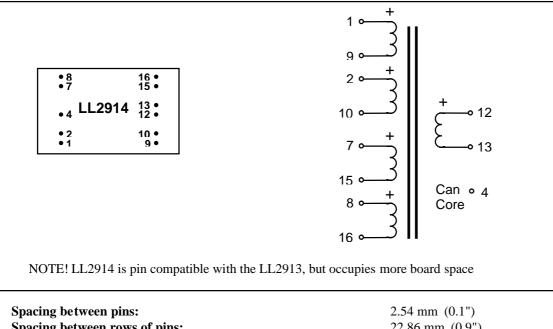
Ribbon Microphone Transformer LL2913

LL2913 is identical to our ribbon microphone transformer LL2911, but (for manufacturing reasons) with a different pinout / winding phase.

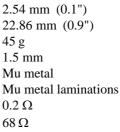
	th x Height above PCB (mn om <u>component</u> side) and wi		30 x 22.5 x 14.5
• 8 • 7	16 ● 15 ●	2 • +	
• 4 LL2913	13 • 12 •	کــــه 10	+ 12
• 2 • 1	10 • 9 •	7 ⊶+	د مع
		15 ~) 8 ~	Can _{°4} Core
		16)	

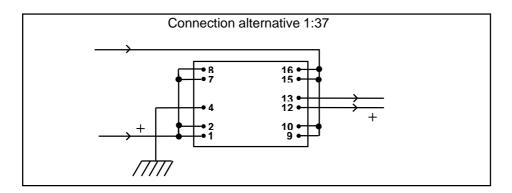
Spacing between pins:	2.54 mm (0.1")
Spacing between rows of pins:	22.86 mm (0.9")
Weight:	27 g
Rec. PCB hole diameter:	1.5 mm
Housing:	Mu metal
Core:	Amorphous strip core
Static resistance of <u>each</u> primary (average):	0.2 Ω
Static resistance of secondary:	59 Ω

Ribbon Microphone Transformer LL2914


LL2914 is a mu metal core version of our amorphous core ribbon microphone transformers LL2913.

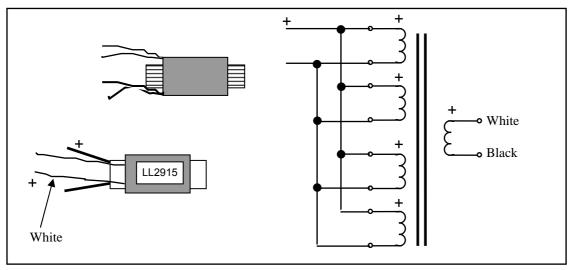
(LL2913 is identical to our well known ribbon microphone transformer LL2911, but [for manufacturing reasons] with a different pinout / winding phase.)


Turns ratio:


1 + 1 + 1 + 1 : 37 38 x 24 x 17

Dims: (Length x Width x Height above PCB (mm)) Pin Layout (viewed from <u>component</u> side) and winding schematic:

Spacing between rows of pins: Weight: Rec. PCB hole diameter: Housing: Core: Static resistance of <u>each</u> primary (average): Static resistance of secondary:

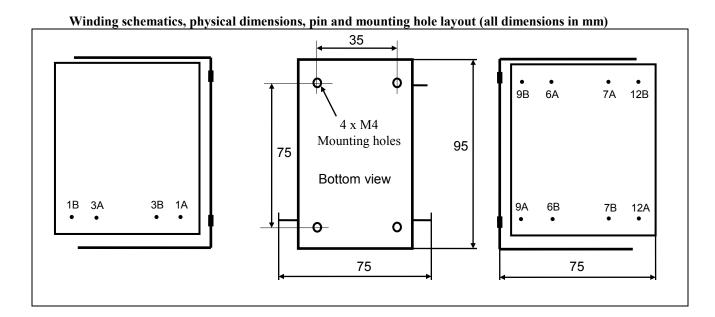

Ribbon Microphone Transformer LL2915

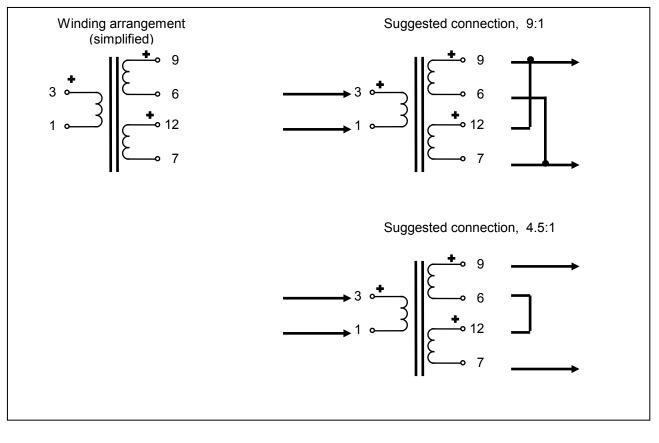
LL2915 is a flying lead version of microphone ribbon transformer LL2914. Core is a classic mu metal lamination core. The two coils each have three winding sections and is combined for best magnetic noise immunity.

Turns ratio:	
Dimensions:	Length [leads not included]
	Max diameter

1 : 37 36mm 22 mm

Layout and Windings Schematics:




Weight: Core: Static resistance of primary: Static resistance of secondary: 34 g Mu metal lamination core 0.05 Ω 69 Ω

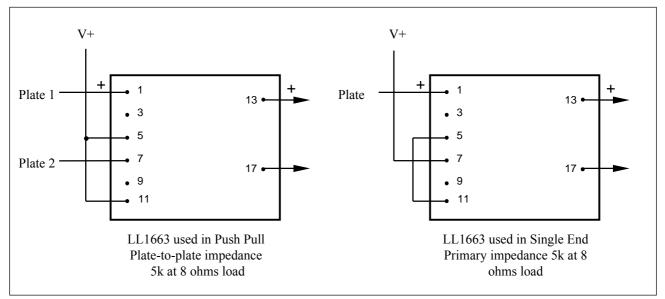
Output Transformer LL3322

The LL3322 is a output transformer, designed to drive a low impedance ribbon element from a 4 - 8 ohms output. The transformer is highly sectioned (5 sections per coil) for high bandwidth. For production reasons, the LL3322 comes in two shapes, LL3322A and LL3322B. Function is identical, but the pinout is different.

Weight Turns ratio Static resistance, primary Static resistance, each secondary Primary inductance Max primary signal at 400Hz 1.3 Kg 9 : 1+1 0.2 Ω < 0.01 Ω 170mH approx. approx. 130V rms.


LL3910 = LL1663 with feedback 5k : 8 ohms

The LL3910 P-P is a four-sectioned dual coil C-core tube amplifier output transformer for 5 k: 8 ohms impedance ratio. The design is based on LL1663, but with a 3.5 ohms low power feedback windning added. The coil is wound using our standard high internal isolation technique with isolation foil between each copper layer. The core is an audio C-core of our own production.

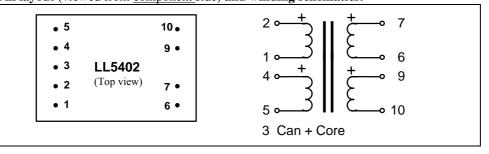


12+12: 1+0.44 or (4+8)+(4+8): 1+0.44

Winding schematics, physical dimensions, pin and mounting hole layout (all dimensions in mm)

Weight:	1.35 kg
Static resistance of each primary:	102 Ω
Static resistance of secondary:	0.4 Ω
Isolation between windings / between windings and core:	4 kV / 2 kV

LL1663 Suggested use (LL3910 feedback not shown):

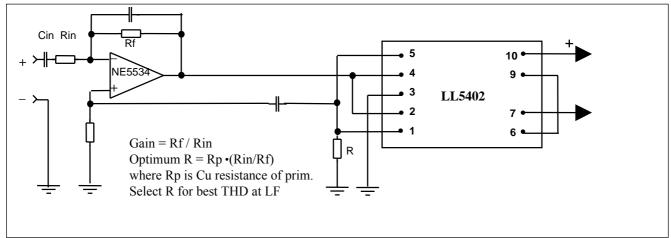

Audio Output Transformer LL5402

LL5402 is an audio output transformer for unbalanced drive, ideally used with mixed feedback drive circuits (see application example below). If primary pins 1 and 5 are connected to ground, the windings are arranged such that cold ends of the primary windings surround each secondary winding. This reduces the effect of capacitance between the primary and the secondary windings.

Turns ratio:

2 + 2 : 1 + 1 43 x 28 x 21

Dims (Length x Width x Height above PCB (mm)): Pin layout (viewed from <u>component side)</u> and winding schematics:

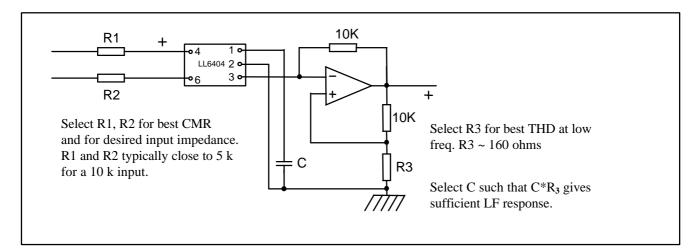


Spacing between pins:	5.08 mm (0.2")
Spacing between rows of pins:	30.48 mm (1.2")
Weight:	92 g
Rec. PCB hole diameter:	1.5 mm
Static resistance of each primary:	30 Ω
Static resistance of each secondary:	7 Ω
Leakage inductance of secondaries (sec. in series):	0.2 mH
No-load impedance:	>800 Ω @ 50 Hz, +20 dBU
Optimum source impedance:	Minus 15 Ω (See application below)
Balance of output (according to IRT, source $< 10 \Omega$, Load 600 Ω):	> 60 dB

Note! Performance figures below are obtained using mixed feedback drive circuits. (See application example).Otherwise use lowest possible source impedance.

Distortion (connection as application example below, load 600 Ω)	+ 22 dBU 0.1% @ 50 Hz
Frequency response (as below , load 600 Ω):	20 Hz 40 kHz +/- 0.3 dB
Voltage loss across transformer (at midband with 600 Ω load):	0 dB
Isolation between primary and secondary windings / between	4 kV / 2 kV
windings and core:	

Application example with mixed feedback: (NOTE! This application was covered by a German patent DE 29 01 567 with application day 13.1.79. Qs far as we know the patent is expired)


Very Small Size Zero Field Input Transformer LL6404

In a Zero Field (ZF) transformer, the magnetic field caused by the input signal should be balanced by a feedback loop which includes the transformer's secondary winding (see schematic below). The feedback arrangement extends the low frequency range (to almost DC!) while maintaining the small size of the transformer. The very small size of the LL6404 requires that the feedback resistor value be very close to the secondary winding resistance.

Turns ratio: Dims (Length x Width x Height above PCB (mr Pin layout (component side view) and winding so	
$\begin{array}{c}4 & \bullet & \bullet \\ & LL6404 \bullet \\ \bullet & \bullet & \end{array} \begin{array}{c}1 & 4 \\ 2 \\ 3 & 6\end{array}$	$\begin{array}{c} & \stackrel{+}{\longrightarrow} \\ & \stackrel{-}{\longrightarrow} \\ & \stackrel{+}{\longrightarrow} \\ & \stackrel{+}{\longleftarrow} \\ & \stackrel{1}{\longleftarrow} \\ & \stackrel{1}{\longleftarrow} \\ & 3 \\ & \text{Can and core } 2 \end{array}$
Housing: Core: Impregnation:	Mu-metal Amorphous strip core Solvent less epoxy resin
Spacing between pins:	2.54 mm (0.1")

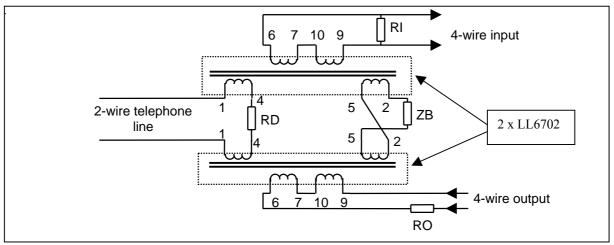
Impregnation:Solvent less epoxySpacing between pins:2.54 mm (0.1")Spacing between rows of pins:10.16 mm (0.4")Weight:4 gRec. PCB hole diameter:1.5 mmStatic resistance of primary (pins 4 - 6):210ΩStatic resistance of secondary (pins 1 - 3):160ΩIsolation between windings/ between windings and core:3kV / 1.5 kV

Principle design of Zero Field input circuitry:

Hybrid Transformer LL6702

LL6702 is a hybrid transformer for telephone applications. It is built using a C-core, and meets requirements for high isolation between windings.

The LL6702 has an extremely low leakage inductance and thus a flat frequency response curve. This makes it easy to design the balancing network for good transhybrid loss in the entire frequency range.


Turns ratio: Dims (Length x Width x Pin layout (viewed from	0	. ,,	1.5 , 1.5 : 1 + 1 47 x 31 x 15 natics:
o 5 o 4 LL6702 o 2 (Top view) o 1	10 o 9 o 8 o 7 o 6 o	$4 \stackrel{+}{\underset{1}{\overset{1}{\overset{2}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset$	$ \begin{array}{c} + & 6 \\ & 7 \\ & 10 \\ & 9 \\ \end{array} $
Spacing between pins:			5.08 mm (0.2")

Spacing between pins:	5.08 mm (0.2")
Spacing between rows of pins:	30.48 mm (1.2")
Weight:	70 g
Rec. PCB hole diameter:	1.5 mm
Static resistance of primary (pins 1 - 4):	50Ω
Static resistance of balance (pins 2 - 5):	45Ω
Static resistance of each secondary (pins 6 - 7, 9 - 10):	36Ω
Max. DC current:	60 mA
Transhybrid loss (laboratory conditions):	50 dB, 10 Hz - 10 kHz
Isolation between primary and balance windings/ between	en
primary and secondary windings:	2 kV / 4 kV

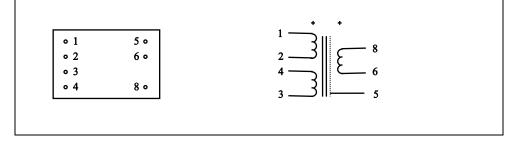
Typical application: Telephone hybrid using two LL6702:

Balancing network ZB: Select ZB for minimum crosstalk which occurs when ZB equals actual line impedance. In applications, this is often accomplished with a combination of a potentiometer and a series of capacitors **Line termination**: If RI = RO, the termination impedance, **ZT**, as seen from the two-wire side is: **ZT** (AC) = 170 Ω + RI + RD. Thus, ZT is independent of ZB.

ZT (DC) = 100 Ω + RD. RD is an optional resistor used to reduce the line DC current

AB LARS LUNDAHL

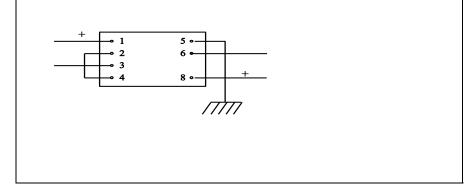
Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN Phone: Int. +46-176 139 30 Nat. 0176-139 30 Int. +46-176 139 35 Nat. 0176-139 35


Fax:

Line Input Transformer LL6807

LL6807 is a small size, high impedance line input transformer.

The transformer consists of two coils each with one primary and one secondary part separated by a electrostatic shield. The secondaries are serially connected internally. The core is a high permeability mu-metal core. Being a high impedance transformer, the LL6807 should normally be used with primaries connected in series. The transformer is housed in a mu-metal box.


Turns ratio:	1 + 1 : 2
Dims (Length x Width x Height above PCB (mm)):	28 x 18 x 12
Pin layout (viewed from pins side) and winding schematics:	

Spacing between pins: 3.81 mm (0.15") Spacing between rows of pins: 20.32 mm (0.8") Weight: 18 g **Rec. PCB hole diameter:** 1.5 mm 400Ω Static resistance of each primary: Static resistance of secondary: 1.1 kΩ **Distortion** (source impedance 600Ω): + 10 dBU < 0.2% @ 50 Hz + 17 dBU < 1 % @ 50 HzSelf resonance point : > 100 kHz**Frequency response** (source 600Ω , load 33 k Ω): 15 Hz -- 25 kHz +/- 0.5 dB **Loss across transformer** (at 1 kHz with above termination): 0.5 dB

Isolation between windings/ between windings and shield:

Recommended connection:

3 kV / 1.5 kV

AB LARS LUNDAHL

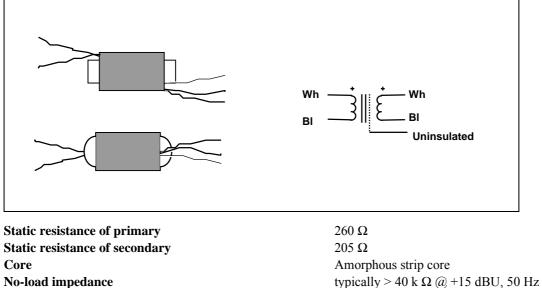
Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN

Weight:

Phone: Int. +46-176-13930 Nat. 0176-13930 Fax: Int. +46-176-13935 Nat. 0176-13935

XLR Inline Transformer LL6808

The transformer LL6808 is designed to be housed in Neutrik XLR connector bodies. It can be used for e.g. ground isolation or for balanced-to-unbalanced conversion.


Turns ratio: Dims: Length (Not including connection wires)

Minimum inner diameter of housing tube

1:1

26mm 16 mm (Designed to fit inside M17x1 thread) 13 grams

Side and top views and winding schematics:

No-load impedance Frequency response @ 0 dBU (source 50Ω , load $10k\Omega$) Distortion (THD, source 600Ω) Isolation between windings:

R970310

10 Hz - 100 kHz +/- 0.3 dB

0.5% @ +15 dBU, 50Hz

1 kV

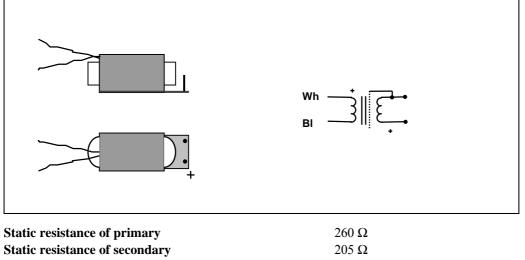
AB LARS LUNDAHL

Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN Phone: Int. +46-176-13930 Nat. 0176-13930 Fax: Int. +46-176-13935 Nat. 0176-13935

XLR Inline Transformer LL6809

The transformer LL6809 is designed to be housed in Neutrik XLR connector bodies. It can be used for e.g. ground isolation or for balanced-to-unbalanced conversion.

Turns ratio: Dims:

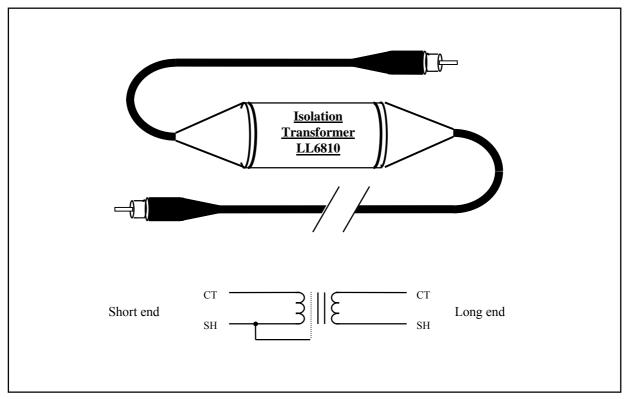

> Length (Not including connection wires) Minimum inner diameter of housing tube

Weight:

1:1

31mm16 mm (Designed to fit inside M17x1 thread)14 grams

Side and top views and winding schematics:



Static resistance of secondary Core No-load impedance Frequency response @ 0 dBU (source 50Ω , load $10k\Omega$) Distortion (THD, source 600Ω) Isolation between windings: 260 Ω 205 Ω Amorphous strip core typically > 40 k Ω @ +15 dBU, 50 Hz 10 Hz - 100 kHz +/- 0.3 dB 0.5% @ +15 dBU, 50Hz 1 kV

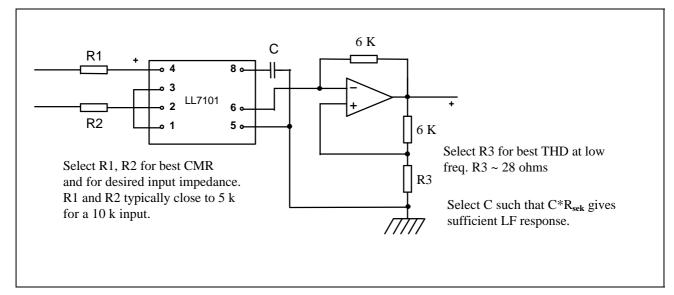
Phono Cable Isolation Transformer Unit LL6810-phmphm

The cable transformer unit LL6810 is designed for breaking up ground connections between unbalanced units in mobile or stationary audio systems. The unit is magnetically shielded and contains a medium impedance transformer, with LF saturation above +15 dBU, 50 Hz. Due to the low copper resistance of the transformer, the unit can be used both for output and input.

Cable length	6 ft
Connector type	Phono Male
External magnetic shielding	Amorphous sheet
Housing	Brass, Diam. 19 mr
Transformer Characteristics	
Static resistance of primary	260 Ω
Static resistance of secondary	210 Ω
Core	Amorphous strip co
No-load impedance (@+15 dBU, 50Hz)	Typically > 40 k Ω
Frequency response @ 0 dBU (source 600 Ω , load 10k Ω)	10 Hz - 100 kHz +/-
Distortion (THD, source 600 Ω)	< 0.5 % @ +15 dBU
Isolation:	1 kV

ım

ore 2 -/- 0.3 dB U, 50 Hz 1 K V


Zero Field Input Transformer LL7101

In a Zero Field (ZF) transformer application, the magnetic field caused by the input signal is balanced by a feedback loop which includes the transformer's secondary winding. (See application example below). The feedback arrangement extends the low frequency range to almost DC in spite of the small size of the transformer.

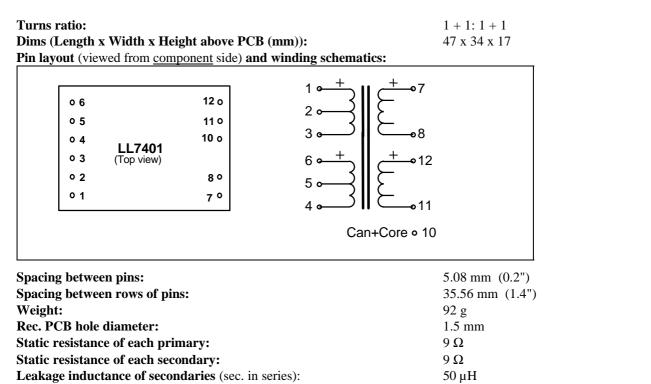
Turns ratio: Dims: (Length x Width x Height above PCB (mm)) Pin Layout (component side view) and winding schem	1 + 1 : 1.38 28 x 18 x 11 atics
1 o	$\begin{array}{c} + \\ + \\ + \\ + \\ - \\ - \\ - \\ - \\ - \\ - \\$
Housing:	Mu-metal

Housing:	Mu-metal
Core:	Mu-metal
Impregnation:	Solventless epoxi resin
Spacing between pins:	3.81 mm (0.15")
Spacing between rows of pins:	20.32 mm (0.8")
Rec. PCB hole diameter:	1.5 mm
Weight:	16 g
Static resistance of each primary:	138 Ω
Static resistance of secondary:	28 Ω
Isolation between windings:	2 kV
Recommended primary resistance:	10 kΩ 20 kΩ

Principle design of Zero Field input circuitry:

No-load impedance:

>700 Ω @ 50 Hz, +20 dBU

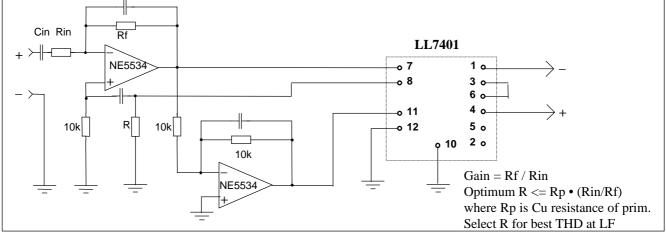

> 60 dB

Minus 9 Ω (See application below)

Audio Output Transformer LL7401

LL7401 is an audio output transformer for balanced drive.

In LL7401 a five section winding structure is used. This results in a very low leakage inductance without high capacitive coupling and low isolation voltage, which are drawbacks of the bifilar winding technique.



Optimum source impedance: Balance of output (according to IRT, source $< 10 \Omega$, Load 600 Ω):

Note! Performance figures below are obtained using mixed feedback drive circuits. (See application example).Otherwise use lowest possible source impedance.

Distortion (connection as application example below, load 600 Ω)0.05 % @ +22 dBU, 50 HzFrequency response (@ 10 dBU, connections as below , load 600 Ω):20 Hz -- 80 kHz +/- 0.3 dBVoltage loss across transformer (at midband with 600 Ω load):0 dBIsolation between primary and secondary windings / between4 kV / 2 kV

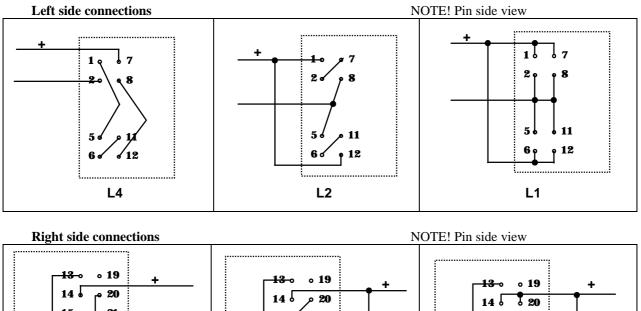
Application example with mixed feedback: (**NOTE**! This application is covered by a German patent DE 29 01 567 with application day 13.1.79, valid as far as we know in Germany only.)

Line Input / General Purpose Transformers LL7901 and LL7902

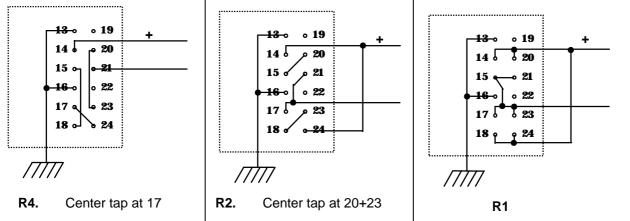
LL7901 and LL7902 are large size, high level, high performance audio transformers, made for extraordinary requirements. The LL7901 has an extreme level capability (+ 34 dBU @ 50 Hz) while the LL7902 combines high level capability (+28 dBU @ 50 Hz) with low copper resistance.

The transformer consists of two coils each with two primary and two secondary windings separated by electrostatic shields. The core is a high permeability mu metal lamination core.

The transformers are magnetically shielded by a mu metal case.


Turns ratio: Dims (Length x Width x Heig Pin layout (viewed from pins	-	1 + 1 + 1 + 1 : 1 + 1 + 1 + 1 66 x 32 x 21 tics:
1 ° ° 7 2 ° ° 8 5 ° ° 11 6 ° ° 12	$13 \circ 0 19$ $14 \circ 0 20$ $15 \circ 21$ $16 \circ 22$ $17 \circ 23$ $18 \circ 24$	7 + 14 8 15 Coil 1 1 13 + Core & Can 20 21 6 23 5 12 12 16 Coil 2 11 18 17

Spacing between pins: Spacing between rows of pins: Weight: Rec. PCB hole diameter: 5.08 mm (0.2") 5.08 / 45.72 mm (0.2 / 1.8") 155 g 1.5 mm


	LL7901	LL7902
Static resistance of each primary (average):	120Ω	28Ω
Static resistance of each secondary (average):	125Ω	28Ω
Distortion (primaries connected in series, source impedance 600Ω):	+ 20 dBU primary level, 50 Hz: 0.1 %	+ 10 dBU primary level, 50 Hz: 0.1 %
	+ 34 dBU primary level, 50 Hz: 1 %	+ 28 dBU primary level, 50 Hz: 1 %
Self resonance point :	> 80 kHz	> 150 kHz
Optimum termination for best square- wave response (source imp. 600Ω):	12 k Ω in series with 1.7 nF	5 k Ω in series with 1.3 nF
Frequency response (source and load as above)	10 Hz - 55 kHz +/- 0.5 dB	10 Hz - 100 kHz +/- 0.5 dB

Isolation between primary and secondary windings/ between windings and shield: 4 kV / 2 kV

Connection alternatives, LL7901 and LL7902

Suggested applications using LL7901 and LL7902

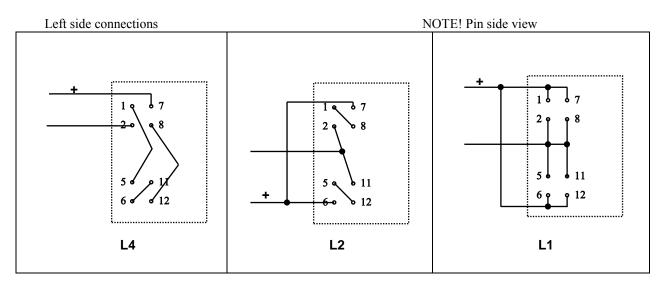
Application	Max primary level,	Transformer	Connections
	<1% THD@50 Hz		
Very high level input stage 1:1	+34 dBU	LL7901	L4 - R4
Very high level input stage 1:2	+28 dBU	LL7901	L2 - R4
Very high level input stage 2:1	+34 dBU	LL7901	L4 - R2
High level isolation unit 1:1	+28 dBU	LL7902	L4 - R4
High level isolation unit 1:1	+22 dBU	LL7902	L2 - R2
Reduced copper resistance			
Low resistance isolation unit 1:1	+16 dBU	LL7902	L1- R1
(Transformer copper resistance 14 ohms)			
Microphone / line input 1:2	+22 dBU	LL7902	L2 - R4
Microphone / line input 1:4	+16 dBU	LL7902	L1 - R4

Turns ratio:

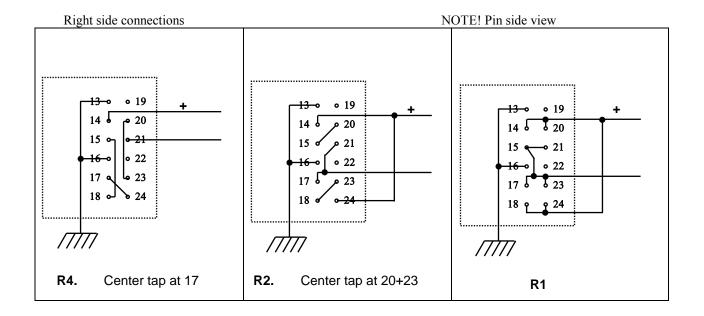
1 + 1 + 1 + 1 : 2 + 2 + 2 + 2

Microphone Input Transformer LL7903

The LL7903 is a large, high level, high performance audio transformer, made for extraordinary requirements. The transformer combines high level capability (+28 dBU @ 50 Hz primary level) with low copper resistance and is designed for the most demanding applications. The LL7903 consists of two coils, each with two primary and two secondary windings separated by electrostatic shields. The core is a high permeability mu metal lamination core.


The transformer is magnetically shielded by a mu metal case.

Spacing between pins:	5.08 mm (0.2")
Spacing between rows of pins:	5.08 / 45.72 mm (0.2 / 1.8")
Weight:	155 g
Rec. PCB hole diameter:	1.5 mm

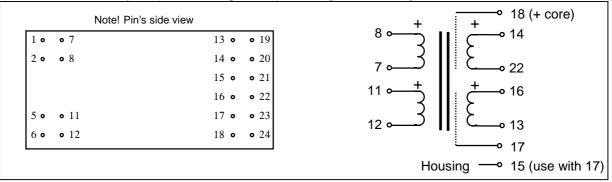

Static resistance of each primary (average):	28Ω
Static resistance of each secondary (average):	125Ω
Distortion (primaries connected in series, source impedance 600Ω):	+ 10 dBU primary level, 50 Hz: 0.1 %
	+ 28 dBU primary level, 50 Hz: 1 %
Self resonance point :	80 kHz
Optimum termination for best square-wave response Source imp. 600Ω. Connection L4 : R4	30 k Ω in series with 400 pF
Frequency response Source and load as above. Connection L4 : R4	10 Hz - 70 kHz +/- 0.5 dB

Isolation between primary and secondary windings/ between windings and shield: 4 kV / 2 kV

Connection alternatives, LL7903

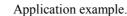
Suggested a	applications	using LL7903	3
-------------	--------------	--------------	---

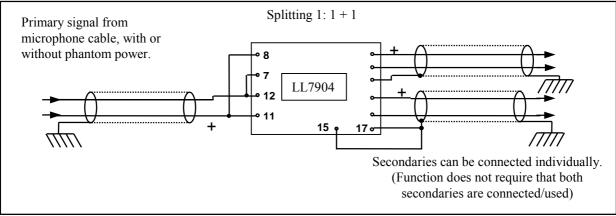
Application	Max primary level,	Connections
	<1% THD@50 Hz	
Microphone / line input 1:2	+28 dBU	L4 - R4
Microphone / line input 1:4	+22 dBU	L2 - R4
Microphone / line input 1:8	+16 dBU	L1 - R4

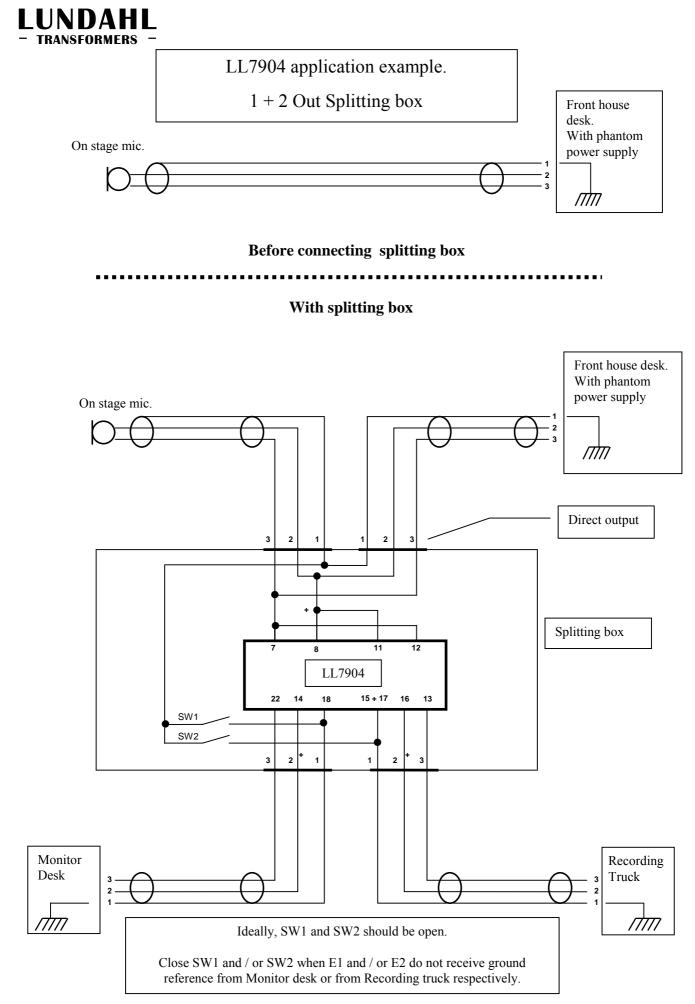

Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN

LL7904 High Level Splitting Transformer

In many splitting applications, the splitting transformer must have a high immunity to input common mode signals, to stray magnetic fields from e.g. power transformers and to large ground potential differences in receiving systems. The LL7904 is developed to handle those types of problems. When designing the LL7904, we have used our well-established two-coil structure to create a transformer with a high degree of symmetry. The transformer is built up from two primary windings (which should be used in parallel) and two secondary windings. Each secondary winding is built up from two sections, one from each coil and is surrounded by it own electrostatic shields. The symmetric structure results in an internal cancellation of noise signals caused by external magnetic field (humbucking). It also increases immunity to ground noise between secondary systems and reduces the effects of input common mode signals. The transformer is housed in a mu-metal can and is impregnated in solventless epoxy resin.


Turns ratio:


1+1:1+1**Pin layout** (viewed from <u>pins</u> side) and simplified winding schematics:



Spacing between	Spacing between	Recommended
pins	rows of pins	PCB hole diameter:
5.08 mm (0.2")	5.08 / 45.72 mm (0.2 / 1.8")	1.7 mm

Dimensions (Max. L x W x H above PCB(mm))	66 x 32 x 21	
Weight:	155 g	
Static resistance of each primary:	55 Ω	
Static resistance of each secondary (Pins 14 - 22 and pins 16 - 13 resp.):	43 Ω and 66 Ω	
Distortion	0.1% @ +16 dBU, 50 Hz	
	< 1 % @ +23 dBU, 50 Hz	
Frequency response (Ref : 0 dBu, 1kHz)	10 Hz 80 kHz +/- 0.5 dB	
Test arrangement: Parallel input - parallel output . Source 150Ω , load 10 k Ω		
CMRR at 20 kHz (Source 600 ohms, load 2 x 10k)	> 60 dB	
CMRR at 20 kHz from sec. to sec. (Source 600 ohms, load 2 x 10k)	> 40 dB	
Isolation test primary - secondary / secondary - secondary / 18 - (15+17)	4 kV / 2 kV / 1 kV RMS	

LL7904 Page 2 of 2

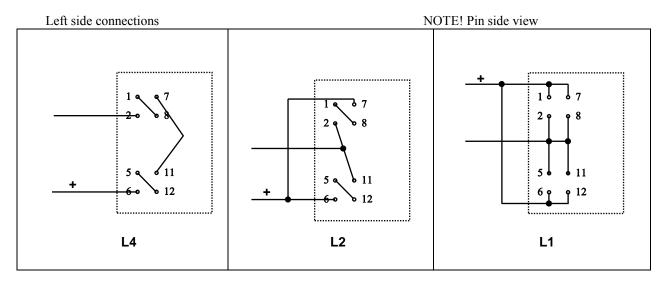
Turns ratio:

1 + 1 + 1 + 1 : 5.6 + 5.6

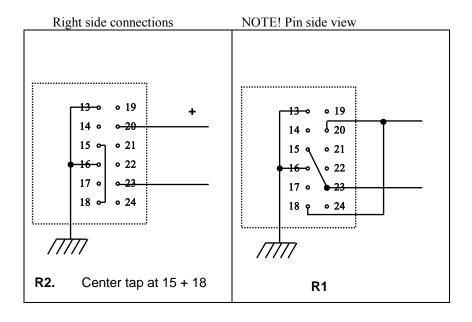
Mic/Line Input Transformer LL7905

The LL7905 is a large, high level, high performance audio transformer, made for extraordinary requirements. The transformer combines very high secondary level capability (+37 dBU [54.5V rms] @ 50 Hz) with low copper resistance and is designed for the most demanding applications. The LL7905 consists of two coils, each with two primary and one secondary windings separated by electrostatic shields. The core is a high permeability mu metal lamination core.

The transformer is magnetically shielded by a mu metal case.


s (Length x Width x Heigh layout (viewed from pins si		66 x 32 x 21
ayout (newed from <u>pino</u> s		$ \begin{array}{c} 7 \\ 8 \\ 8 \\ 8 \\ 1 \\ 20 \\ 1 \\ 20 \\ 1 \\ 20 \\ 1 \\ 20 \\ 1 \\ 20 \\ 1 \\ 20 \\ 1 \\ 20 \\ 1 \\ 20 \\ 1 \\ 20 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$
1 • • 7	13 • • 19	
2 • • 8	14 • • 20	$2 \longrightarrow 13 + \text{Core & Can}$
	15 o o 21	
	16 o o 22	+
5 • • 11	17 o o 23	6 <u> </u>
6 • • 12	18 • • 24	$5 \xrightarrow{5}_{12} 18 \qquad \text{Coil } 2$
	Not	11 16 e! Isolation between shields is not guaranteed!
ing between pins:	5.08	mm (0.2")

Spacing between pins:	5.08 mm (0.2")
Spacing between rows of pins:	5.08 / 45.72 mm (0.2 / 1.8")
Weight:	155 g
Rec. PCB hole diameter:	1.5 mm

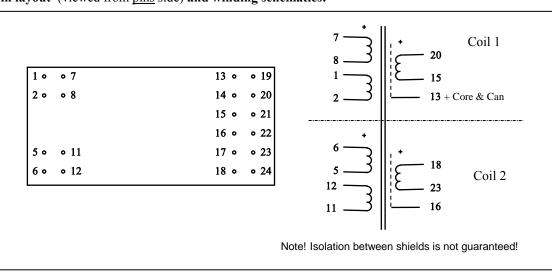

Static resistance of each primary (average):	28Ω
Static resistance of each secondary (average):	395Ω
Distortion (primaries connected in series, source impedance 600Ω):	+ 10 dBU primary level, 50 Hz: 0.1 %
	+ 28 dBU primary level, 50 Hz: 1 %
Self resonance point :	80 kHz
Optimum termination for best square-wave response (Connections L4-R2, source imp. 600Ω):	$30k\Omega$ in series with $100pF$
Frequency response (source and load as above, connection L4-R2, secondary side balanced with or without grounded centertap.	10 Hz - 55 kHz +/- 1 dB
Frequency response (source and load as above, connection L4-R2, secondary side unbalanced with pin 23 grounded)	10 Hz - 30 kHz +/- 1 dB

Isolation between primary and secondary windings/ between windings and shield: 4 kV / 2 kV

Connection alternatives, LL7905

Suggested applications using LL7905

Application	Connections	Max primary level, < 1% THD@50 Hz	Corresponding secondary level
Microphone / line input 1:2.8	L4 – R2	+28 dBU (19.5 V rms)	+37 dBU (54.5V rms)
Microphone / line input 1:5.6	L2 – R2	+22 dBU (9.7 V rms)	+37 dBU (54.5V rms)
Microphone / line input 1:11.2	L1 – R2	+16 dBU (4.9 V rms)	+37 dBU (54.5V rms)

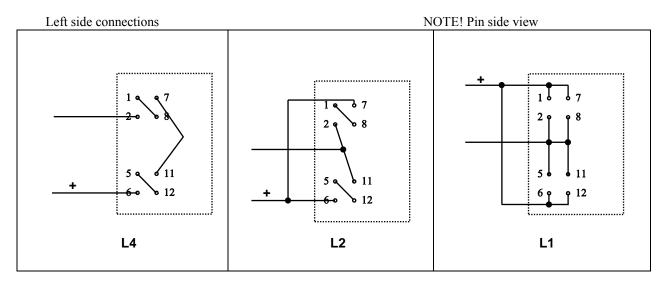

1 + 1 + 1 + 1 : 5.6 + 5.6

66 x 32 x 21

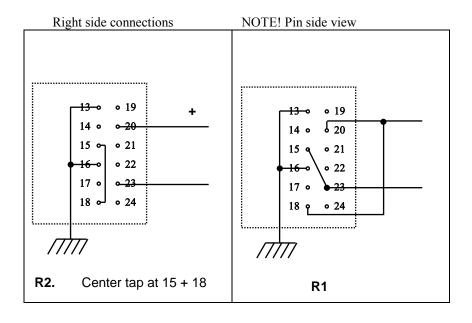
Mic/Line Input Transformer LL7906

The LL7906 is a large, high level, high performance audio transformer, pin compatible with our LL17905, but with an internal structure better optimized for high turns-ratio step-up applications. The transformer combines very high secondary level capability (+37 dBU [54.5V rms] @ 50 Hz) with low copper resistance. The LL7906 consists of two coils, each with two primary and one secondary windings separated by electrostatic shields. The core is a high permeability mu metal lamination core. The transformer is magnetically shielded by a mu metal case.

Turns ratio: Dims (Length x Width x Height above PCB (mm)): Pin layout (viewed from pins side) and winding schematics:



Spacing between pins:	5.08 mm (0.2")
Spacing between rows of pins:	5.08 / 45.72 mm (0.2 / 1.8")
Weight:	155 g
Rec. PCB hole diameter:	1.5 mm


Static resistance of each primary (average):	24Ω
Static resistance of each secondary (average):	450Ω
Distortion (primary connection L1, source impedance 150Ω):	+ 8 dBU primary level, 50 Hz: 0.1 %
	+ 16 dBU primary level, 50 Hz: 1 %
Self resonance point :	30 kHz
Optimum termination for best square-wave response (Connections L1-R2 [1:11.2], source imp. 200Ω) :	80kΩ
Frequency response: (source and load as above, connection L1-R2, secondary side balanced with or without grounded centertap.	10 Hz - 45 kHz +/- 1 dB
Frequency response (source and load as above, connection L1-R2, secondary side unbalanced with pin 23 grounded)	10 Hz - 25 kHz +/- 1 dB

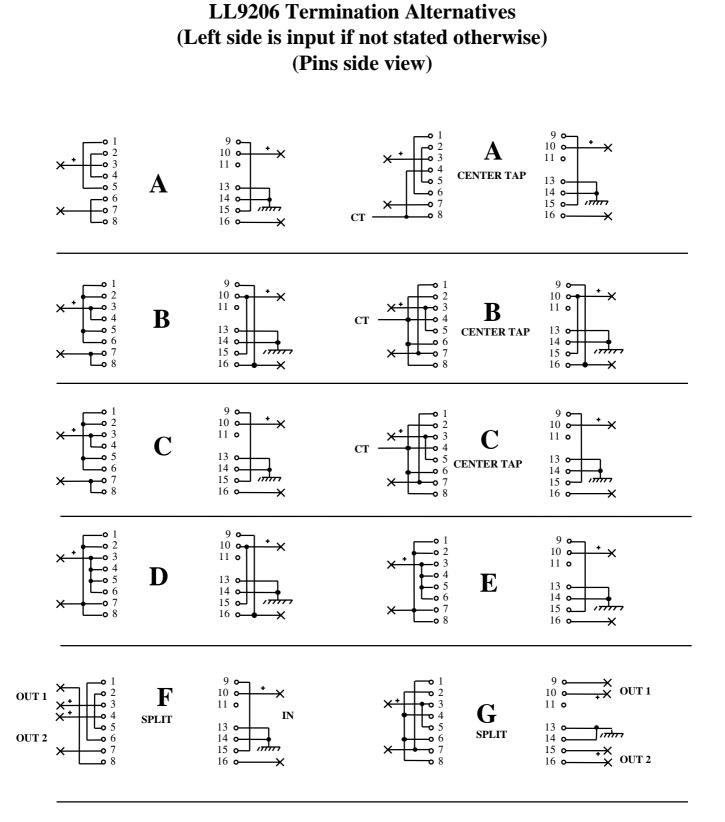
Isolation between primary and secondary windings/ between windings and shield: 4 kV / 2 kV

Connection alternatives, LL7906

Suggested applications using LL7906

Application	Connections	Max primary level, < 1%	Corresponding
		THD@50 Hz	secondary level
Microphone / line input 1:2.8	L4 – R2	+28 dBU (19.5 V rms)	+37 dBU (54.5V rms)
Microphone / line input 1:5.6	L2 – R2	+22 dBU (9.7 V rms)	+37 dBU (54.5V rms)
Microphone / line input 1:11.2	L1 – R2	+16 dBU (4.9 V rms)	+37 dBU (54.5V rms)

Audio Transformer/Moving Coil Input Transformer LL9206


LL9206 is an input audio transformer for moving coil pickups. The transformer is built up from two coils, each coil with one secondary winding surrounded by two primary windings. This structure results in an excellent frequency response. All winding ends are available on the pins. Thus, the transformer can be used with a set of different turn's ratios.

The LL9206 is made with amorphous core material. As this type of core does not store energy (unlike e.g. conventional mu-metal cores) the low frequency resonance with external series capacitors is practically eliminated.

Turns ratio:	1 + 1 + 1 + 1 : 10 + 10
Dims: (Length x Width x Height above PCB (mm))	30 x 22.5 x 14.5
Pin Layout (viewed from pins side) and windings schen	natics:
o 1 9 o o 2 10 o o 3 11 o o 4 0 5 o 6 14 o o 7 15 o o 8 16 o	$1 \circ + \\ 2 \circ + \\ 3 \circ + \\ 4 \circ + \\ 8 \circ + \\ 7 \circ + \\ 7 \circ + \\ 6 \circ $
	5 °
	Can + Core 13, 14
Spacing between pins:	2.54 mm (0.1")
Spacing between rows of pins:	22.86 mm (0.9")
Weight: Rec. PCB hole diameter:	27 g 1.5 mm
Static resistance of <u>each</u> primary (average):	1.5 mm 10 Ω
Static resistance of each secondary (average):	395 Ω
Self resonance point :	> 250 kHz
Frequency response (<i>@</i> -10 dBU, all in series. Source 50	
requency response (ag 10 abo, an in series. Source so	10 Hz 25 kHz +/- 1 dB
	10 Hz 90 kHz +/- 1.5 dB
Distortion (primaries connected in series, source impedan	
Primary no load impedance @ 0 dBU, 50 Hz, all in seri	,
Core / Can:	Amorphous Strip Core / Mu metal can
Isolation between windings / between windings and cor	

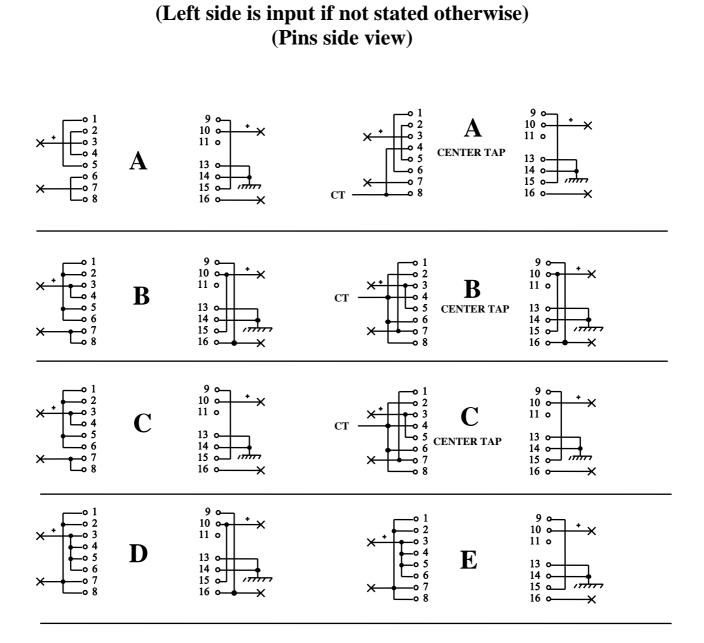
Turns ratio and possible use at different termination alternatives.				
	Termination alternatives are shown on the next page			
Termination	Turns	Furns Copper Resistance Possible Use		
Alternative ratio prim/sec				
Α	A 1:5 40Ω / 790 Ω 400Ω / 10 kΩ			
В	B 1:5 $10\Omega/200 \Omega$ Not recommended		Not recommended	
С	C 1:10 10Ω / 790 Ω 100Ω / 10kΩ			
D	D 1:10 $2.5\Omega/200\Omega$ Not recommended		Not recommended	
E	1:20	2.5Ω / 790 Ω	25Ω / 10kΩ	

When the LL9206 is used in MC pickup applications, please note that the primary side of the transformer must have a ground reference.

Tibeliusgatan 7 S-761 50 NORRTÄLJE SWEDEN

Moving Coil Input Transformer LL9226

LL9226 is an MC transformer based on (and pin compatible with) our classic LL9206, but with reduced copper resistance and level capability. The new design has resulted in an even better frequency response but still with enough no load impedance to maintain the LF bandwidth. The transformer is built up from two coils, each coil with one secondary winding surrounded by two primary windings. Advantages with this structure are excellent frequency response and high immunity to surrounding magnetic fields. All winding ends are available on the pins. Thus, the transformer can be used with a set of different turns ratios.


The LL9226 core is our cobalt based uncut amorphous strip core. The transformer is housed in a mu metal can.

Turns ratio: Dims: (Length x Width x Height above PCB (mm)) Pin Layout (viewed from <u>pins</u> side) and windings sche	1 + 1 + 1 + 1 : 10 + 10 30 x 22.5 x 14.5 matics:
o 1 9 o o 2 10 o o 3 11 o o 4 0 o 5 13 o o 6 14 o o 7 15 o o 8 16 o	$1 \circ \underbrace{+}{2} \circ \underbrace{+}{3} \circ \underbrace{+}{3} \circ \underbrace{+}{3} \circ \underbrace{-}{10} \circ \underbrace{-}{10} \circ \underbrace{-}{10} \circ \underbrace{-}{10} \circ \underbrace{-}{15} \circ \underbrace{-}{5} \circ \underbrace{-}{15} \circ$
Spacing between pins:	2.54 mm (0.1")
Spacing between rows of pins:	22.86 mm (0.9")
Weight:	29 g
Rec. PCB hole diameter:	1.5 mm

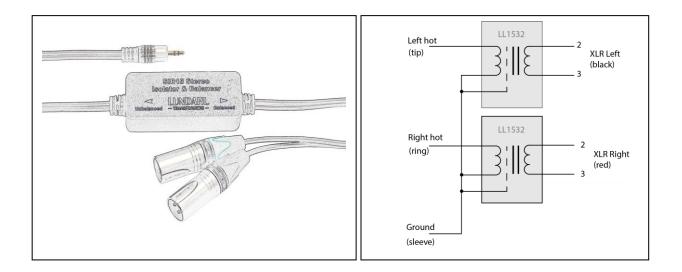
Weight:	29 g
Rec. PCB hole diameter:	1.5 mm
Static resistance of <u>each</u> primary (average):	5 Ω
Static resistance of <u>each</u> secondary (average):	130 Ω
Frequency response	10 Hz 50 kHz +/- 1 dB
(@ -10 dBU, Connection "A", source 50 Ω , load 100 k Ω):	5 Hz 100 kHz +/- 1.5 dB
Distortion (primaries connected in series, source impedance 40Ω):	< 0.5% @ -2 dBU, 50 Hz
Primary no load impedance @ 0 dBU, 50 Hz, all in series:	3 kΩ typically
Core / Can:	Amorphous Strip Core / Mu
	metal can
Isolation between windings / between windings and core:	3 kV / 1.5 kV

Turns ratio and possible use at different termination alternatives.			
Termination alternatives are shown on the next page			
Termination	Turns	Copper Resistance	Suggested use for best
Alternative	ratio	prim/sec	frequency response
Α	1:5	$20~\Omega$ / $260~\Omega$	MC cartridge $< 100 \Omega$
В	1:5	$5~\Omega$ / $65~\Omega$	Not recommended
С	1:10	$5~\Omega$ / $260~\Omega$	MC cartridge $< 50 \Omega$
D	1:10	$1~\Omega$ / 65 Ω	Not recommended
E	1:20	$1~\Omega$ / $260~\Omega$	MC cartridge $< 25 \Omega$

Application hint: As the LL9226 does not have Faraday shields, both sides of the transformer should have a common ground reference.

LL9226 Termination Alternatives

SIB15


Stereo Isolation and Balancing unit

SIB15 is a unit for interfacing between unbalanced audio sources (such as laptops and tablets) and professional, balanced audio systems. In particular in situations where a laptop is the source for both audio and video signals, the SIB15 eliminates the ground loops which are common sources of hum and noise.

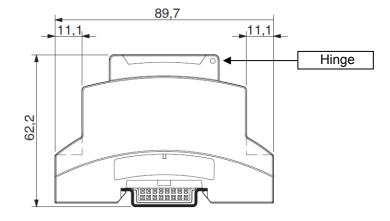
SIB15 has a length of 1.8 meters (where length of unbalanced cable is 1.4m), which is enough for most situations.

SIB15 provides:

- Full galvanic isolation between all connectors
- True unbalanced-to-balanced conversion
- Robust die-cast aluminum housing

Technical specification:	
Total weight	275 g
Total length	1.9 m
Internal transformers	2 x LL1532
Signal level capability at 50Hz	+12 dbu / 3V RMS / 8V P-P
Signal loss across transformer (load 10k)	0.3 dB
Frequency response (source 10 ohms, load 10k)	6Hz – 80kHz +/- 1 dB
Isolation between any two connectors	> 1 kV RMS

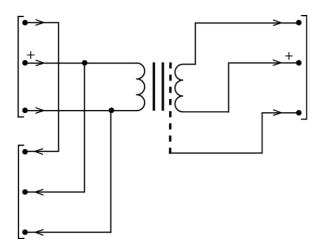
R151109 PL



Transformer unit DIN1527

DIN1527 is a ready-to-use transformer unit with screw terminals. DIN1527 can be used for galvanic isolation, balanced/unbalanced conversion and splitting 1 direct -> 1 direct + 1 isolated output.

As indicated in the name, the unit is designed to fit on DIN rail (EU EN50022, US TS35) profiles, but it also has facilities for screw mounting. The internal transformer is our general purpose LL1527



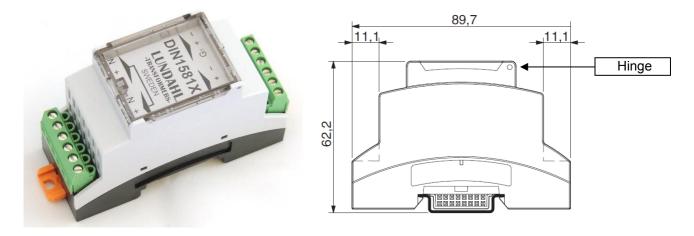
- Suggested connection -

----- Techni

Technical details -----

Transformer static resistance primary + secondary	200Ω
Core	Mu metal lamination core
Max signal level (THD less than 1%)	+16 dBU @ 50 Hz
Frequency response @ 0 dBU (source 150Ω, load 10kΩ)	10 Hz - 60 kHz +/-1 dB
Distortion (THD) at 50 Hz (source 150Ω)	< 0.2 % @ 50 Hz, for all signal levels -40 through +10 dBU
Loss across transformer with load 10k Ω	0.2 dB
Isolation between input and output sides	1 kV

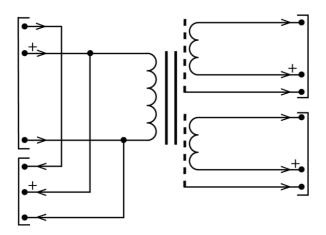
R160628 PL


Lundahl Transformers AB, Norrtälje, Sweden, Phone +46 (0) 176-139 30, office@lundahl.se, www.lundahl.se

Transformer splitting unit DIN1581XL

DIN1581XL is a ready-to-use transformer unit with screw terminals. DIN1581XL can be used for galvanic isolation, balanced/unbalanced conversion and splitting 1 direct -> 1 direct + 2 isolated output.

As indicated in the name, the unit is designed to fit on DIN rail (EU EN50022, US TS35) profiles, but it also has facilities for screw mounting. The internal transformer is our general purpose LL1581XL



Suggested connection

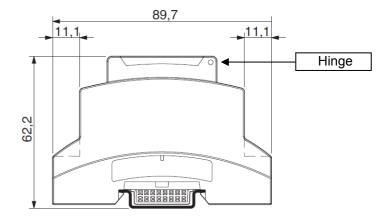
----- Те

Technical details ------

Transformer static resistance primary + secondary	60Ω , each channel
Core	Mu metal lamination core
Max signal level (THD less than 1%)	+13 dBU @ 50 Hz
Frequency response @ 0 dBU (source 150Ω , load $10k\Omega$)	10 Hz - 100 kHz +/-1 dB
Distortion (THD) at 50 Hz (source 150Ω)	< 0.2 % @ 50 Hz, for all signal levels -40 through +8 dBU
Loss across transformer with load 10k Ω	0.2 dB
Isolation between input and output sides	1 kV

R160628 PL

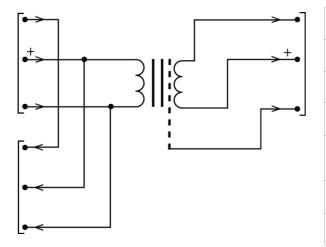
Lundahl Transformers AB, Norrtälje, Sweden, Phone +46 (0) 176-139 30, office@lundahl.se, www.lundahl.se



High level transformer unit DIN1588

DIN1588 is a high level ready-to-use transformer unit with screw terminals. DIN1588 can be used for galvanic isolation, balanced/unbalanced conversion and splitting 1 direct -> 1 direct + 1 isolated output.

As indicated in the name, the unit is designed to fit on DIN rail (EU EN50022, US TS35) profiles, but it also has facilities for screw mounting. The internal transformer is our general purpose LL1588



- Suggested connection -----

----- Technic

Technical details ------

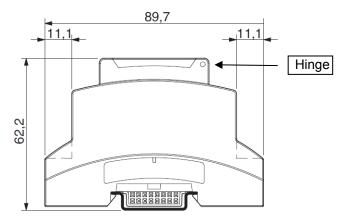
Transformer static resistance primary + secondary	240Ω
Core	Mu metal lamination core
Max signal level (THD less than 1%)	+28 dBU @ 50 Hz
Frequency response @ 0 dBU (source 150Ω, load 10kΩ)	10 Hz - 60 kHz +/-1 dB
Distortion (THD) at 50 Hz (source 150Ω)	< 0.2 % @ 50 Hz, for all signal levels -40 through +24 dBU
Loss across transformer with load 10k Ω	0.2 dB
Isolation between input and output sides	1 kV

R160628 PL

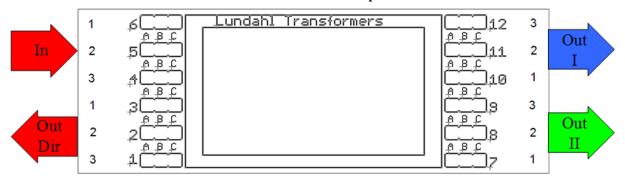
Lundahl Transformers AB, Norrtälje, Sweden, Phone +46 (0) 176-139 30, office@lundahl.se, www.lundahl.se

Transformer DIN unit

Depending on which transformer you chose, you will need to configure jumper wires on the PCB to match the transformer and meet your needs. On the next page you find the most common configurations. We will be glad to help you with other configurations if the one you need cannot be found here.


Recommended work flow:

- 1. On the PCB, wire and solder the jumper wires (use insulated wires)
- 2. On the PCB, place and solder the screw terminals
- 3. On the PCB, place and solder the transformer
- 4. Test the assembled board with AC signal (don't use Ohmmeter/DC voltage as this might magnetize the transformer's core)
- 5. Put down the PCB in the DIN base (lower black housing part) until it snaps in
- 6. Take the DIN cover (upper grey housing part) and turn cover hinge side to output side of the PCB
- 7. Place the DIN cover (upper grey housing part) on the base and press it until it snap in place
- 8. Connect wires to screw terminals in the same manner as in XLR connectors (1-GND, 2-Hot, 3-Cold)


Housing - Phoenix Contact BC 35,6 - 2TE (2 pitch), Material: polycarbonate

The housing is suitable for use in common installation distributor boxes and complies with the standard DIN 43880. When needed to be installed with screws, pull out the orange mounting flanges. Mounting holes distance is 98mm. Screw Terminals – Phoenix Contact MKDSP 1,5/6 Ratings: Max 300V/10A, Cu wire $0,05 - 2,1 \text{ mm}^2 / 30 - 14 \text{ AWG}$

DIN PCB v1.0 – Top view

NOTES:

1-2-3 numbers are indicators for the external wiring which is XLR-like (1-Ground, 2-Hot, 3-Cold). Arrows shows the intended signal flow to/from this unit. Arrow colours mean different GND's (ground references).

Recommended PCB configurations (with reservation for typographical mistakes, inaccuracies or omissions)

LL1527, LL1527XL

(Important: Ground pin "E" of the transformer should be oriented towards OUT I & II side of the PCB)

Ratio 1:1 (serial : serial) In - Dir Out - Out I

Connect 1A with 1B	Connect 7B with 10C
Connect 3A with 3B	Connect 8B with 11C
Connect 5A with 5B	Connect 9A with 11A
Connect 6A with 6B	Connect 12B with 12C
Connect 2A with 5C	
Connect 1C with 4A	
Connect 2C with 4C	

Ratio 1:1 (parallel : parallel) In – Dir Out – Out I

Connect 1A with 1B	Connect 7B with 10C
Connect 2A with 2B	Connect 8A with 11A
Connect 3A with 3B	Connect 9A with 12A
Connect 4A with 4B	Connect 11B with 11C
Connect 5A with 5B	Connect 12C with 12C
Connect 6A with 6B	
Connect 1C with 4C	
Connect 2C with 5C	

Ratio 1:2 (parallel : serial) In – Dir Out – Out I

Connect 1A with 1B	Connect 7B with 10C
Connect 2A with 2B	Connect 8B with 11C
Connect 3A with 3B	Connect 9A with 11A
Connect 4A with 4B	Connect 12B with 12C
Connect 5A with 5B	
Connect 6A with 6B	
Connect 1C with 4C	
Connect 2C with 5C	

Important note: Ground reference should be provided for position 10 for proper transformer operation (see transformer's data sheet).

LL1540

(Important: Ground pin "E" of the transformer should be oriented towards OUT I & II side of the PCB)

Ratio 1:1 (serial : serial) In – Dir Out – Out I

Connect 1A with 1B	Connect 7B with 10C
Connect 3A with 3B	Connect 8B with 11C
Connect 5A with 5B	Connect 9A with 11A
Connect 6A with 6B	Connect 12B with 12C
Connect 2A with 5C	
Connect 1C with 4A	
Connect 2C with 4C	

Important note: Ground reference should be provided for position 10 for proper transformer operation (see transformer's data sheet).

LL1570-LL1570XL

Ratio 1:1 (serial : serial) In – Dir Out – Out I

Connect 1A with 1B	Connect 7A with 10A
Connect 3A with 3B	Connect 8B with 11C
Connect 5A with 5B	Connect 9A with 11A
Connect 6A with 6B	Connect 10B with 10C
Connect 2A with 5C	Connect 12B with 12C
Connect 1C with 4A	
Connect 2C with 4C	

Ratio 1:1 (parallel : parallel) In – Dir Out – Out I

Connect 1A with 1B	Connect 7A with 10A
Connect 2A with 2B	Connect 8A with 11A
Connect 3A with 3B	Connect 9A with 12A
Connect 4A with 4B	Connect 10B with 10C
Connect 5A with 5B	Connect 11B with 11C
Connect 6A with 6B	Connect 12C with 12C
Connect 1C with 4C	
Connect 2C with 5C	

Ratio 1:2 (parallel : serial) In – Dir Out – Out I

Connect 7A with 10A
Connect 8B with 11C
Connect 9A with 11A
Connect 10B with 10C
Connect 12B with 12C

Important note: Ground reference should be provided for positions 6 (IN-1) and 10 (OUT I-1) for proper transformer operation (see LL1570, LL1570XL data sheet).

Splitting In – Dir Out – Out I – Out II

Connect 1A with 1B	Connect 7B with 7C
Connect 2A with 2B	Connect 8B with 8C
Connect 3A with 3B	Connect 9B with 9C
Connect 4A with 4B	Connect 10B with 10C
Connect 5A with 5B	Connect 11B with 11C
Connect 6A with 6B	Connect 12B with 12C
Connect 1C with 4C	
Connect 2C with 5C	

Important note: Ground reference should be provided for positions 3 (and/or 6) (IN-1 and/or DIR OUT-1), 7 (OUT II-1) and 10 (OUT I-1) for proper transformer operation (see LL1570, LL1570XL data sheet).

LL1581XL

Splitting In – Dir Out – Out I – Out II

Connect 1A with 1B	Connect 7B with 7C
Connect 2A with 2B	Connect 8B with 8C
Connect 3A with 3B	Connect 9B with 9C
Connect 4A with 4B	Connect 10B with 10C
Connect 5A with 5B	Connect 11B with 11C
Connect 6A with 6B	Connect 12B with 12C
Connect 1C with 4C	
Connect 2C with 5C	

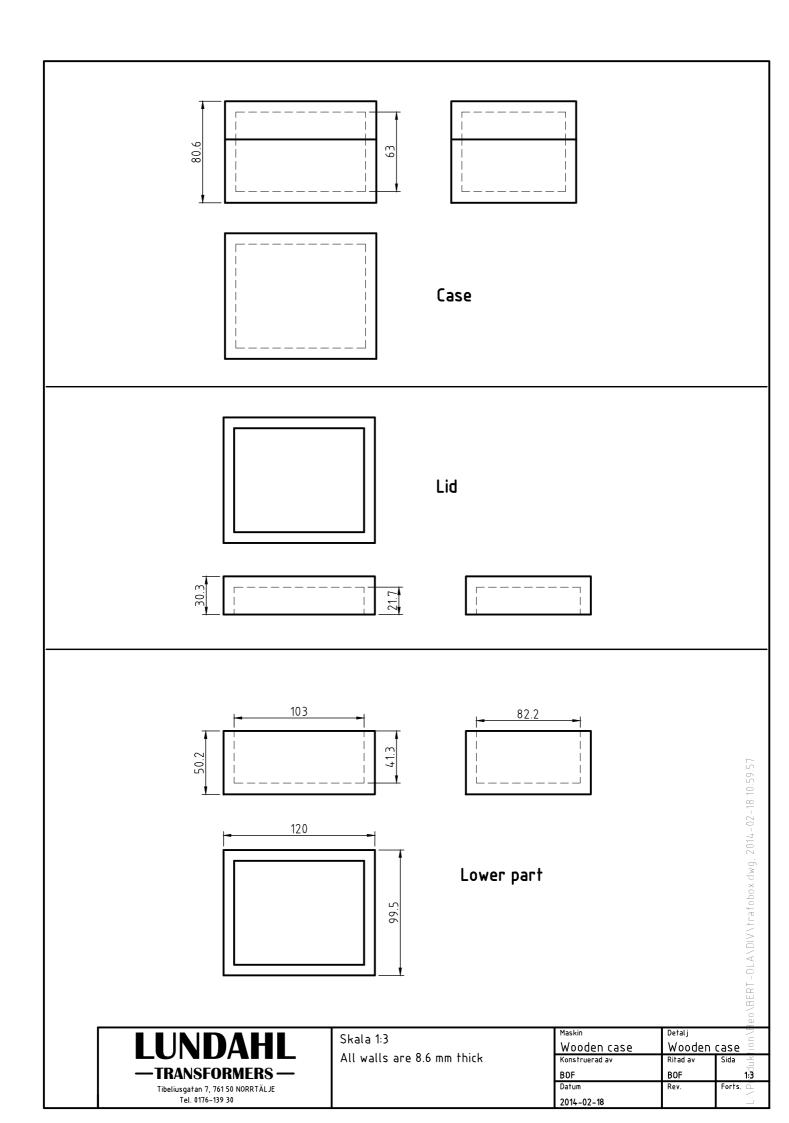
Important note: Ground reference should be provided for positions 7 (OUT II-1) and 10 (OUT I-1) for proper transformer operation (see transformer's data sheet).

LL1588

Ratio 1:1 (serial : serial) In - Dir Out - Out I

Connect 1A with 1B	Connect 12B with 12C
Connect 3A with 3B	Connect 8B with 11C
Connect 5A with 5B	Connect 9A with 11A
Connect 6A with 6B	Connect 7B with 10C
Connect 2A with 5C	
Connect 1C with 4A	
Connect 2C with 4C	

Ratio 1:1 (parallel : parallel) In - Dir Out - Out I


Connect 1A with 1B	Connect 11B with 11C
Connect 2A with 2B	Connect 12C with 12C
Connect 3A with 3B	Connect 8A with 11A
Connect 4A with 4B	Connect 9B with 12A
Connect 5A with 5B	Connect 7B with 10C
Connect 6A with 6B	
Connect 1C with 4C	
Connect 2C with 5C	

Important note: Ground reference should be provided for position 10 (OUT I-1) for proper transformer operation (see transformer's data sheet).

Splitting In – Dir Out – Out I – Out II

Connect 1A with 1B	Connect 7B with 7C
Connect 2A with 2B	Connect 8B with 8C
Connect 3A with 3B	Connect 9B with 9C
Connect 4A with 4B	Connect 11B with 11C
Connect 5A with 5B	Connect 12B with 12C
Connect 6A with 6B	
Connect 1C with 4C	
Connect 2C with 5C	

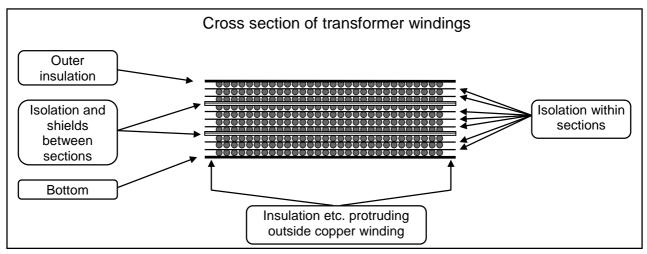
Important note: Ground reference should be provided for position 7 (OUT II-1) for proper transformer operation (see transformer's data sheet).

Technical Papers

Transformer Design Philosophies

Our transformer design philosophy is based on forty years of experience from manufacturing transformers for a diversity of applications. Our transformers are used in professional audio and hi-fi as well as in power supplies, telecommunications, welding, military applications etc.

We have evolved some unique problem solving strategies when designing transformers, discussed further below, and we design and build our own production machines in order to fulfill otherwise unobtainable transformer design goals.


1. Winding technique

Most manufacturers of audio transformers use a conventional bobbin winding system: Within a transformer section, the copper wire is wound in a more or less "random" fashion, and thus the voltage difference between two adjacent wires may be substantial. Transformer sections (such as primary and secondary sections) are separated by isolation film and tape, but the isolation materials is confined by the same bobbin sides as the copper wire. Static shields are also confined to the same limits.

The Lundahl Transformers winding technique does not use bobbins. Our open end winding technique (with insulation between <u>each</u> layer of copper wire <u>within</u> a transformer section) is consistently applied, even for the smallest transformer types and for the thinnest wire dimensions. This gives the following advantages:

- The wire is wound in well-ordered layers. As a result, no wires are crossed and the fill factor is increased (in spite of more insulating material!).
- As additional isolation is applied in the vertical direction, the isolation is reinforced where strong mechanical forces and high voltage differences occur.
- The copper wire is in close contact with low-voltage neighbors of the same layer only.
- Inter-winding capacitance is reduced and <u>reproducible</u>.

Insulation and, if applicable, electrostatic shields are placed between each section, protruding outside the copper wire edges to improve the insulating capability as well as the electrostatic shielding.

2. Dual coil structure.

Our transformers are built up from two coils, each coil with <u>both</u> primary and secondary windings. (It is a common misconception that the primary winding is placed in one coil and the secondary winding is placed in the other. This was the case in high school physics laboratory classes, but such a transformer does not perform very well in the real world.) The dual coil structure has many advantages:

Magnetic immunity is improved with about 40 dB, as a signal caused by an external magnetic field is cancelled between the two coils.

Magnetic stray field is likewise reduced.

CMRR is improved, in particular if windings are used in parallel across the two coils, as plus and minus contributions cancel.

3. Choice of core shape and core materials

In order to meet customer requirements on both electrical and mechanical parameters, we manufacture not only transformer coils, but also cans and C-cores (and machines for can and C-core production) in house. For some applications, we also use amorphous metal cores made in a "inverted toroid technique" developed in house. These manufacturing capabilities give us a large freedom to optimize design also for limited volume applications. We focus on PCB mount transformers as we think this is a rational way of using small size transformers and regularly turn down requests for flying leads.

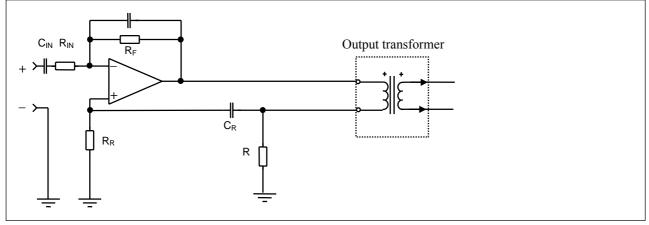
4. Long lifetime and high insulation requirements

Our winding technique gives us an excellent base for high insulation requirements. A molding process fills empty space in the transformer. When impregnated with epoxy resin, the result is high electrical insulation (normally 4 kV between windings) and excellent mechanical strength.

5. Price / performance considerations:

Manufacture of high quality audio transformers is, in spite of a semi automated production process, a very labor-intensive task. Cheap transformers can be found in many electronics supply catalogs. However, it is not the transformers you would like to listen to in your application. Truly sound transparent transformers are manufactured by a handful of companies only.

Mixed feedback drive circuits for audio output transformers

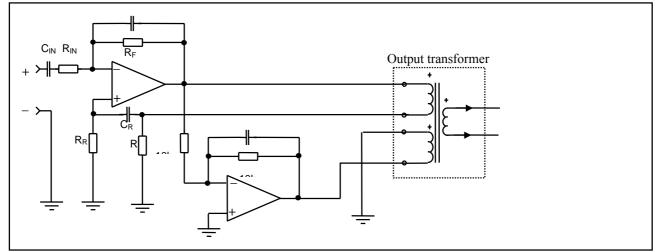

Using mixed feedback drive circuits with audio output transformers have two major advantages:

- 1. Transformer-caused distortion is reduced (or almost eliminated)
- 2. The primary copper resistance of the transformer is eliminated, thus reducing the output impedance correspondingly.

The circuits below illustrate the principles for mixed feedback. In real applications, additional components may have to be added to reach desired performance.

NOTE! Application of mixed feedback principles for audio output was covered by a German patent DE 29 01 567 with application day 13.1.79. As far as we understand, the patent has now expired.

Unbalanced drive



Gain = $R_F / R_{IN} \bullet$ Transformer turns ratio.

Select $R_R \sim R_{IN}$

Select C_R such that $1 / (2\pi \bullet R_R \bullet C_R) << F_{MIN}$, the lowest desired output frequency. Optimum $R = R_{primary} \bullet (R_{IN}/R_F)$, where $R_{primary}$ is copper resistance of primary winding(s). Select R for good THD at LF, and for good square wave response

Balanced drive

Gain = $2 \cdot R_F / R_{IN} \cdot Transformer turns ratio.$ Select $R_R \sim R_{IN}$

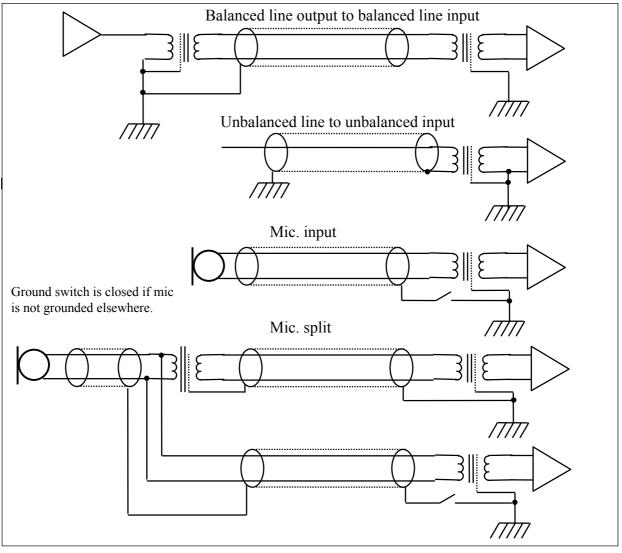
Select C_R such that $1 / (2\pi \bullet R_R \bullet C_R) << F_{MIN}$, the lowest desired output frequency. Optimum R <= $R_{primary} \bullet (R_{IN}/R_F) / 2$, where $R_{primary}$ is copper resistance of primary winding(s). Select R for good THD at LF, and for good square wave response.

Grounding and shielding.

Line Output.

One of the objectives of an output transformer is to give the output line a high <u>and symmetrical</u> impedance versus ground. This is obtained with transformer faradays shield(s) or symmetrical winding arrangements. The symmetry is necessary to prevent mode transfer, i.e. common mode signals picked up by the output line creating differential mode signals (IRT test).

The shield(s) also contributes to output signal balance (IEC test) and to the protection of the output stage from high line voltages caused by lightning.


The line shield and the transformer shield / the transformer primary cold connection should be connected to the ground of the line output device.

Line Input.

A line input transformer must not allow common mode signals from the line to form differential mode signals (good CMR). For best result, the shield of an input transformer should be connected to the ground of the receiving device. To avoid ground loops, the shield of the line cable should <u>not</u> be connected to this ground.

Mirophone Input.

If the mic. is not grounded, the shield of the microphone cable must be connected to the mic amplifier ground, togheter with the shields of the mic input transformer. In case of mic splitting, the grounding scheme must be carefully designed to make shure all cable shields are grounded without creating ground loops.

R950825

Where quality and transformers meet

In conventionally manufactured transformers one have to rely on the enamel isolation of the copper winding wire for electrical isolation within a section. Extra isolation, such as tape and film, is placed only between sections. Within a section, the copper wire is wound in a more or less random fashion, and the voltage difference between two adjacent wires may be substantial. In addition to the risk for short-circuits, the inter-winding capacitance may vary substantially between individual transformers.

As the vast majority of transformers used are produced in this way, transformers have a reputation for unreliability. And the problems are inherent in the construction of the transformers. Thus quality programs which aim at conformity of production (like ISO-9000) can reduce the problems only slightly.

Transformers from LUNDAHL TRANSFORMERS, on the other hand, have a strong reputation for reliability and repeatability. This is a result of a careful design and manufacturing process:

- 1 An open end winding technique with insulation between <u>each</u> layer of copper wire is consequently applied even for the thinnest of wire dimensions. This gives the following properties:
 - 1.1 The wire is wound in well-ordered layers. As a result, no wires are crossed and the fill factor is increased (in spite of more insulating material!).
 - 1.2 As the additional isolation is applied across the vertical direction, the isolation is reinforced where strong mechanical forces and high voltage differences occur.
 - 1.3 The copper wire is in close contact with low-voltage neighbors of the same layer only.
 - 1.4 Winding capacitances are reduced and <u>reproducible.</u>
- 2 Each transformer is submitted to isolation tests prior to molding to correct and sort out potential low isolation voltage candidates.
- 3 A molding process is developed where naked wires are fixated in a ceramic casting.
- 4 Each transformer is impregnated in a pressure and vacuum cycling process where the windings and the mold is soaked with a solventless epoxy resin.
- 5 In the final tests each individual transformer is tested for malfunction and isolation breakdown.
- 6 The production is carried out by our very long-experienced staff (average employment time for our employees is more then 10 years).

Due to our unwillingness to compromise on our ideas on how the ideal transformer should be designed and manufactured, we refrain from manufacturing products where our design principles cannot be applied, such as toroidal transformers. Due to our rather unique concept, we have also been forced to build most of our production machines in house, including e.g. winding machines.

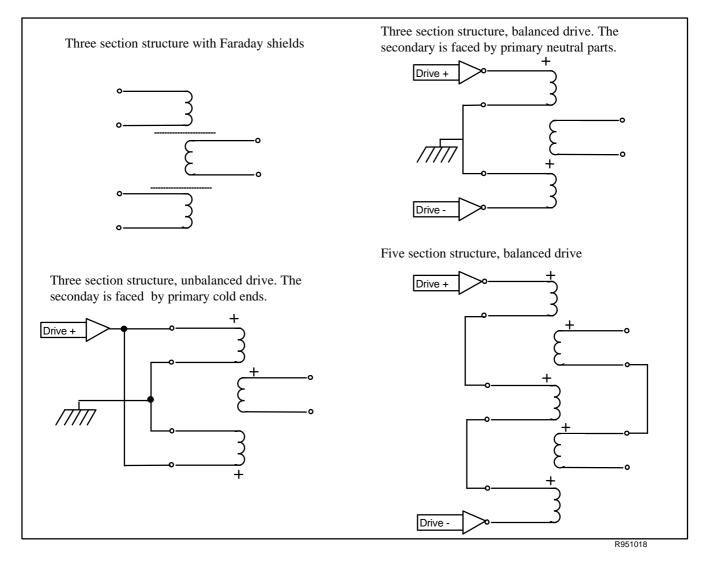
As all companies, we are dependent on the satisfaction of our customers to survive, and we will continue to do our best to retain our customers' confidence. In terms of quality development, our future plans are to document certain key steps in the production process which have not yet been properly documented, and to continue to develop the products and the production process in order to give our customers maximum value for their money.

Per Lundahl, Managing Director

Winding arrangements of output transformers

The winding arrangement of an output transformer can be optimized to achieve good common mode rejection and/or good bandwidth. Good CMRR is desirable to avoid mode transfer (common mode signals are transformed to differential mode signals) in the output transformer. This sheet explains the different winding structures for our output transformers

With Faraday shield


Faraday shields, placed between the primary and the secondary windings, are used to reduces the capacitive coupling. A transformer with Faraday shield is more complicated to manufacture but can be used with any type of output drive. In our Faraday shielded output transformers, such as the LL1517 and the LL1518 each coil is wound in three sections.

Primary cold ends facing secondary winding

The primary and secondary windings can be arranged such that the cold (grounded) side of the primary windning faces the secondary windning. As the voltage swing in this end of the primary windning is only a fraction of the total swing, the capacitive coupling is greatly reduced. This technique requires different winding arrangement for unbalanced drive (e.g. LL5402) or balanced drive (e.g. LL1524).

Five-section structure for increased bandwidth

In a five-section structure, leakage inductance is minimized almost to the extent of a bifilar wounded transformer. By letting the electrical potential of each layer of the secondary winding follow the potential of the adjecent primary winding, capacitive coupling is reduced, and thus high bandwidth is acheived.

Lundahl Transformers AB Tibeliusgatan 7 SE-761 50 Norrtälje SWEDEN email: office@lundahl.se http://www.lundahl.se

Norrtälje, September 22, 2014

Company statement regarding: the EU directive 2011/65/EU (RoHS2) the EU REACH regulation (SVHC 155 of June 16th, 2014)

From mid June 2005, all soldering at Lundahl Transformers are carried out with lead-free solder. We have also ensured from our suppliers that all materials used in production of our transformers are RoHS-compliant. Thus all transformers manufactured after July 1, 2005 are RoHS compliant.

All Lundahl RoHS-compliant transformers are market with an encircled "F" on the label, except in some very rare cases (e.g. LL6404, LL1572, LL1574....) where the label is too small to accommodate anything but the type number.

In our products or production process, no substances listed in the above REACH regulation are used.

Per Lundahl Managing Director Lundahl Transformers AB